DOI QR코드

DOI QR Code

Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control

  • Khadimallah, Mohamed A. (College of Engineering, Civil Engineering Department, Prince Sattam Bin Abdulaziz University) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Harbaoui, Imene (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis EI Manar-ENIT BP37- Le belvedere)
  • Received : 2020.06.24
  • Accepted : 2020.10.21
  • Published : 2020.12.25

Abstract

In current study, utilizing the Kelvin's theory with polynomial, exponential and trigonometric volume fraction laws for functionally graded cylindrical shell vibrations. Effects of different parameters for ratios of length- and height-to-radius and angular speed versus fundamental natural frequencies been determined for two categories of cylindrical shells with clamped-free edge condition. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The frequencies are same when the cylinder is stationary. The frequencies increases and decreases on changing the constituent materials. The frequency results are verified with the earlier literature for the applicability of present model.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

References

  1. Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Scientif. Res., 36(2), 184-235.
  2. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. http://dx.doi.org/10.12989/acc.2018.6.6.585.
  3. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proc. Cambridge Philos. Soc., 7, 101-111.
  4. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
  5. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of highspeed rotating shells with calculation for cylindrical shells. J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
  6. Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
  7. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65-74. http://dx.doi.org/10.12989/acc.2019.7.2.065.
  8. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Tran. ASME, J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.
  9. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
  10. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5.
  11. Ghosh, A., Miyamoto, Y., Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications. Ceramic transactions", AM Ceram. Soc., 76, 171-189.
  12. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 039. http://dx.doi.org/10.12989/acc.2015.3.1.039.
  13. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  14. Lam, K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.
  15. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  16. Love, A.E.H. (1888), "XVI. The small free vibrations and deformation of a thin elastic shell", Philos. Tran. Roy. Soc. London.(A.), 179, 491-546. https://doi.org/10.1098/rsta.1888.0016.
  17. Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038.
  18. Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", IOP Conf. Ser.: Mater. Sci. Eng., 115(1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014
  19. Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", IOP Conf. Ser.: Mater. Sci. Eng., 338(1), 012017. https://doi.org/10.1088/1757-899X/338/1/012017
  20. Mehar, K. and Panda, S.K. (2018b), "Thermal free vibration behavior of FG‐CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  21. Mehar, K. and Panda, S.K. (2018c), "Elastic bending and stress analysis of carbon nanotube‐reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  22. Mehar, K. and Panda, S.K. (2018d), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT11-2015-0237.
  23. Mehar, K. and Panda, S.K. (2018e), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  24. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. http://dx.doi.org/10.12989/anr.2019.7.3.181.
  25. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  26. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  27. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
  28. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737.
  29. Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.
  30. Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  31. Mehar, K., Panda, S.K. andMahapatra, T.R. (2018d), "Nonlinear frequency responses of functionally graded carbon nanotubereinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(03), 1850028. https://doi.org/10.1142/S175882511850028X.
  32. Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.
  33. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  34. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  35. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. http://dx.doi.org/10.12989/acc.2017.5.5.539.
  36. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. https://doi.org/10.1007/s00707-006-0438-0.
  37. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
  38. Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of prestresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.
  39. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.
  40. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  41. Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", National Aeronautic and Space Administration; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, VA.
  42. Sharma, P., Singh, R. and Hussain, H. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  43. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.
  44. Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Tran. ASME, J. Eng. Indus., 93, 1229-1232. https://doi.org/10.1115/1.3428067.
  45. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2: Thermo Mech. Behav. Int. Mater., 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
  46. Swaddiwudhipong, S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503
  47. Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2018), "Thermal post-buckling analysis of functionally graded material structures using a modified FSDT", Int. J. Mech. Sci., 144, 74-89. https://doi.org/10.1016/j.ijmecsci.2018.05.033.
  48. Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047.
  49. Trabelsi, S., Zghal, S. and Dammak, F. (2020), "Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures", J. Brazil. Soc. Mech. Sci. Eng., 42, 1-22. https://doi.org/10.1007/s40430-019-2074-3
  50. Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708.
  51. Xuebin, L. (2008), "Study on free vibration analysis of circular cylindrical shells using wave propagation", J. Sound Vib., 311, 667-682. https://doi.org/10.1016/j.jsv.2007.09.023.
  52. Zghal, S. and Dammak, F. (2020), "Vibrational behavior of beams made of functionally graded materials by using a mixed formulation", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 0954406220916533. https://doi.org/10.1177/0954406220916533.
  53. Zghal, S., Ataoui, D. and Dammak, F. (2020), "Static bending analysis of beams made of functionally graded porous materials", Mech. Bas. Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1748053.
  54. Zghal, S., Frikha, A. and Dammak, F. (2018a), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021.
  55. Zghal, S., Frikha, A. and Dammak, F. (2018b), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B: Eng., 150, 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037.
  56. Zghal, S., Frikha, A. and Dammak, F. (2020), "Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes", Appl. Math. Mech., 41(8), 1227-1250. https://doi.org/10.1007/s10483-020-2633-9.
  57. Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001b), "Coupled vibration of fluid-filled cylindrical shells using the wave propagation approach", Appl. Acoust., 62, 229-243. https://doi.org/10.1016/S0003-682X(00)00045-1.
  58. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.