Acknowledgement
This research work has been carried out in the Department of civil engineering, Pondicherry Engineering College, Pondicherry.
References
- ACI 211.4R-93 (Reapproved 1998) (2006), Guide for Selecting Proportions for High Strength Concrete with Portland Cement and Fly Ash, ACI Manual of Concrete Practice (Part1).
- ACI 544.3R-93 (Reapproved 1998) (2006), Guide for Specifying, Mixing, Placing and Finishing Steel Fiber Reinforced Concrete, ACI Manual of Concrete Practice.
- Armelin, H.S. and Helene, P. (1995), "Physical and mechanical properties of SFR dry mix shortcrete", ACI Mater. J., 92(3), 258-267.
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.
- Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
- Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
- ASTM C 39-1992 (2004), Standard Test Method for Compressive Strength of Fiber Reinforced Concrete, ASTM International, American Society for Testing and Materials.
- ASTM C 78-1994 (2004), Standard Test Method for Flexural Strength of Concrete Specimens, ASTM International, American Society for Testing and Materials.
- Ayat, H, Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.
- Beale, M.H., Hagan, M.T. and Demuth, H.B. (2017), Neural Network Toolbox- User's Guide, MathWorks Inc., MA, Natick, USA.
- Boukhatem, B., Kenai, S., Hamou, A.T. and Ghrici, M. (2012), "Predicting concrete properties using neural networks with principal component analysis technique", Comput. Concrete, 10(6), 25-32. http://dx.doi.org/10.12989/cac.2012.10.6.557.
- Chen, S.S. and Shah, K. (1992), "Neural networks dynamic analysis of bridges", ASCE, Proc. Int. Conf. Comput Civil Eng., 1010-1013.
- Cheng Yeh, I.C. (1999), "Design of high-performance concrete mixtures using neural networks and nonlinear programming", ASCE, J. Comput. Civil Eng., 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
- Gazder, U., Al-Amoudi, O.S.B., Khan, S.M.S. and Maslehuddin, M. (2017), "Predicting compressive strength of blended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/10.12989/cac.2017.20.6.627.
- Gazder, U., Baghabara Al-Amoudi, O.S., Saad Khan, S.M. and Maslehuddin, M. (2017), "Predicting compressive strength of blended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. https://doi.org/10.12989/cac.2017.20.6.627.
- Ghaboussi, J., Garrett, J.H. and Wu, X. (1991), "Knowledge based modeling of material behavior with neural networks", ASCE, J. Eng Mech., 17(1), 129-134. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132).
- Hegazy, T., Moselhi, O. and Fazio, P. (1994), "Development of practical neural network applications using back propagation", Microcomput. Civil Eng., 9(2), 145-159. https://doi.org/10.1111/j.1467-8667.1994.tb00369.x.
- Hola, J. and Schabowicz, K. (2005), "Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests", J. Civil Eng. Manage., 11(1), 23-33. https://doi.org/10.3846/13923730.2005.9636329
- Hsu, L.S. and Hsu, C.T. (1994), "Stress-strain behavior of steel fiber reinforced high- strength concrete under compression", ACI Struct. J., 91(4), 448-457.
- Jain, J.C., Shih-Lin, H., Chi, S.Y. and Chem, C. (2002), "Neural network forecast model in deep excavation", ASCE, J. Compur. Civil Eng., 16(1), 59-65. https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(59).
- Ji, T., Lin, T. and Lin, X (2006), "A concrete mix design algorithm based on artificial neural networks", Cement Concrete Res., 36, 1399-1408. https://doi.org/10.1016/j.cemconres.2006.01.009.
- Kasperkiewicz, J., Racz. J. and Dubrawsk, A. (1995), "HPC strength prediction using Artificial Neural Network", ASCE, J. Comput. Civil Eng., 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279).
- Khayat, K.H. and Ghezal, A. (1999), "Utility of statistical modeling in proportioning self-consolidation concrete", Proceedings RILEM Inter Symposium on Self-Compacting Concrete, Stockholm, 345-359.
- Kim, J.I., Kim, D.K. and Yazdani, Fr. (2004), "Application of neural networks for estimation of concrete strength", ASCE, J. Mater. Civil Eng., 16(3), 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257).
- Lanzi, L., Bisagni, C. and Ricci, S. (2004), "Neural network systems to reproduce crash behavior of structural components", Comput. Struct., 82(1), 93-108. https://doi.org/10.1016/j.compstruc.2003.06.001.
- Lin, W.T., Huang, R., Lee, C.L. and Hsu, H.M. (2008), "Effect of steel fibers on the mechanical properties of cement based composites containing silica fume", J. Marine Sci. Technol., 16(2), 214- 221. https://doi.org/10.1007/s00773-010-0113-y
- Mansur, M.A., Chin, M.S. and Wee, Y.H. (1999), "Stress-strain relationship of high strength fiber concrete in compression", ASCE, J. Mater. Civil Eng., 13(1), 21-29. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(21).
- Marante, M.E., Barreto, W.J. and Picón, R.A. (2019), "Using a feed forward ANN to model the inelastic behaviour of confined sandwich panel", Struct. Eng. Mech., 71(5), 545-552. https://doi.org/10.12989/sem.2019.71.5.545.
- Nehdi, M., El Chabib, H. and El Naggar, M.H. (2004), "Predicting performance of self-compacting concrete mixtures using artificial neutral networks", ACI Mater. J., 98(5), 394-401.
- Ni, H.G. and Wang, J.Z. (2000), "Predicting of compressive strength of concrete by artificial neutral networks", Cement Concrete Res., 30, 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
- Nili, M. and Afroughsabet, V. (2010), "Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete", Int. J. Impact Eng., 37, 879-886. https://doi.org/10.1016/j.ijimpeng.2010.03.004.
- Perumal, R. (2015), "Correlation of compressive strength and other engineering properties of high-performance steel fiber reinforced concrete", ASCE, J. Mater Civil Eng., 27(1), 1-7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001050.
- Poon, C.S., Shui, Z.H. and Lam, L. (2004), "Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperature", Cement Concrete Res., 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011.
- Ramadoss, P. and Nagamani, K. (2007), "Mechanical properties of steel fiber reinforced silica fume concrete", J. Civil Eng. Res. Pract., 4(1), 27-44. https://doi.org/10.4314/jcerp.v4i1.29165.
- Ramadoss, P. and Nagamani, K. (2008), "A new strength model for the high-performance fiber reinforced concrete", Comput. Concrete, 5(1), 21-36. https://doi.org/10.12989/cac.2008.5.1.021.
- Ramadoss, P. and Nagamani, K. (2011), "Statistical methods of investigation on the compressive strength of high-performance steel fiber reinforced concrete", Comput. Concrerte, 9(2), 153-169. https://doi.org/10.12989/cac.2012.9.2.153.
- Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489.
- Savino, V., Lanzoni, L., Taratino, A.M. and Vivani, M. (2017), "Simple and effective models to predict the compressive and tensile strength of HPFRC as steel fiber content and type changes", Compos. Part B, 137, 153-162. https://doi.org/10.1016/j.compositesb.2017.11.003.
- Shirkhani, A., Davarnia, D. and Farahmand Azar, B. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273
- Wang, J.Z., Ni, H.G. and He, J.Y. (1999), "The application of automatic acquisition of knowledge to mix design of concrete", Cement Concrete Res., 29(7), 1875-1880. https://doi.org/10.1016/S0008-8846(99)00152-0.
- Xu, B.W. and Shi, H.S. (2009), "Correlations among mechanical properties of steel fiber reinforced concrete", Constr. Build. Mater., 23(12), 3468-3474. https://doi.org/10.1016/j.conbuildmat.2009.08.017.
- Yan, H., Sun, W. and Chen, H. (1999), "The effect of silica fume and steel fiber on the dynamic mechanical performance of highstrength concrete", Cement Concrete Res., 29(2), 423-426. https://doi.org/10.1016/S0008-8846(98)00235-X
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.