DOI QR코드

DOI QR Code

Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea

  • Bae, Hanna (School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University) ;
  • Park, Jinsoon (Department of Convergence Study on the Ocean Science and Technology & Department of Ocean Science, Korea Maritime and Ocean University) ;
  • Ahn, Hyojin (Faculty of Fisheries Sciences, Hokkaido University) ;
  • Khim, Jong Seong (School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University)
  • Received : 2020.10.26
  • Accepted : 2020.12.04
  • Published : 2020.12.15

Abstract

The community dynamics of benthic diatoms in the hypersaline environment are investigated to advance our understanding how salinity impacts marine life. Diatoms were sampled in the two salterns encompassing salt Ponds, ditches, and seawater reservoirs (n = 11), along the salinity gradient (max = 324 psu), and nearby tidal flats (n = 2). The floral assemblages and distributions across sites and stations showed great variations, with a total of 169 identified taxa. First, not surprisingly, higher diversity of benthic diatoms was found at natural tidal flats than salterns. The saltern diatoms generally showed salinity dependent distributions with distinct spatial changes in species composition and dominant taxa. Biota-environment and principal component analysis confirmed that salinity, mud content, and total nitrogen were key factors influencing the overall benthic community structure. Some dominant species, e.g., Nitzschia scalpelliformis and Achnanthes sp. 1, showed salinity tolerance / preference. The number of diatom species at salinity of >100 psu reduced over half and no diatoms were found at maximum salinity of 324 psu. The highest salinity for the observed live diatoms was 205 psu, however, a simple regression indicated a theoretical salinity threshold of ~300 psu on the survival. Finally, the indicator species were identified along the salinity gradient in salterns as well as natural tidal flats. Overall, high species numbers, varying taxa, and euryhaline distributions of saltern diatoms collectively reflected a dynamic saltern ecosystem. The present study would provide backgrounds for biodiversity monitoring of ecologically important microalgal producers in some unique hypersaline environment, and elsewhere.

Keywords

Acknowledgement

This work was supported by the projects entitled "Ecosystem-Based Analysis and Decision-Making Support System Development for Marine Spatial Planning [grant number 20170325]" funded by the Ministry of Oceans and Fisheries of Korea (MOF), South Korea granted to Jong Seong Khim.

References

  1. Admiraal, W. 1976. Salinity tolerance of benthic estuarine diatoms as tested with a rapid polarographic measurement of photosynthesis. Mar. Biol. 39:11-18. https://doi.org/10.1007/BF00395587
  2. Anufriieva, E. 2014. Copepods in hypersaline waters worldwide: diversity, environmental, social, and economic roles. Acta Geol. Sinica 88:43-45. https://doi.org/10.1111/1755-6724.12266_2
  3. Briggs, M., Funge-Smith, S., Subasinghe, R. & Phillips, M. 2004. Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. FAO Fisheries Technical Paper 14-17. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok, 92 pp.
  4. Choi, T. S., Kang, E. J., Kim, J. -H. & Kim, K. Y. 2010. Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed. Algae 25:17-26. https://doi.org/10.4490/algae.2010.25.1.017
  5. Clarke, K. R. & Gorley, R. N. 2006. Primer. PRIMER-e, Plymouth.
  6. Clavero, E., Hernandez-Marine, M., Grimalt, J. O. & Garcia-Pichel, F. 2000. Salinity tolerance of diatoms from thalassic hypersaline environments. J. Phycol. 36:1021-1034. https://doi.org/10.1046/j.1529-8817.2000.99177.x
  7. Costa-Boddeker, S., Thuyen, L. X., Schwarz, A., Huy, H. D. & Schwalb, A. 2017. Diatom assemblages in surface sediments along nutrient and salinity gradients of Thi Vai estuary and Can Gio mangrove forest, Southern Vietnam. Estuar. Coast. 40:479-492. https://doi.org/10.1007/s12237-016-0170-5
  8. Davis, J. S. 1978. Biological communities of a nutrient enriched salina. Aquat. Bot. 4:23-42. https://doi.org/10.1016/0304-3770(78)90004-9
  9. De Lomas, J. G., Corzo, A., Garcia, C. M. & Van Bergeijk, S. A. 2005. Microbenthos in a hypersaline tidal lagoon: factors affecting microhabitat, community structure and mass exchange at the sediment-water interface. Aquat. Microb. Ecol. 38:53-69. https://doi.org/10.3354/ame038053
  10. De Tommasi, E., Congestri, R., Dardano, P., De Luca, A. C., Manago, S., Rea, I. & De Stefano, M. 2018. UV-shielding and wavelength conversion by centric diatom nanopatterned frustules. Sci. Rep. 8:16285. https://doi.org/10.1038/s41598-018-34651-w
  11. Dickman, M., Dixit, S., Fortescue, J., Barlow, B. & Terasmae, J. 1984. Diatoms as indicators of the rate of lake acidification. Water Air Soil Pollut. 21:375-386. https://doi.org/10.1007/BF00163637
  12. Dufrene, M. & Legendre, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67:345-366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
  13. John, J. 1991. Climaconeis stromatolitis, a new species of diatom from Shark Bay, Western Australia. Diatom Res. 6:49-54. https://doi.org/10.1080/0269249X.1991.9705146
  14. Krebs, W. N., Lipps, J. H. & Burckle, L. H. 1987. Ice diatom floras, Arthur Harbor, Antarctica. Polar Biol. 7:163-171. https://doi.org/10.1007/BF00259204
  15. Lee, H. Y. 2013. Diversity and biomass of benthic diatoms in Hampyeong Bay tidal flats. Korean J. Environ. Biol. 31:295-301. https://doi.org/10.11626/KJEB.2013.31.4.295
  16. Lercari, D. & Defeo, O. 2006. Large-scale diversity and abundance trends in sandy beach macrofauna along full gradients of salinity and morphodynamics. Estuar. Coast. Shelf Sci. 68:27-35. https://doi.org/10.1016/j.ecss.2005.12.017
  17. Lozupone, C. A. & Knight, R. 2007. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. U. S. A. 104:11436-11440. https://doi.org/10.1073/pnas.0611525104
  18. Martens, K. R. L. M. 1983. Aspects of the biology of Mytilocypris henricae (Chapman) (Crustacea, Ostracoda) with particular emphasis on salinity tolerance, life history and postembryonic ontogeny. Ph.D. dissertation, The Australian National University, Canberra, 234 pp.
  19. Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L., Zhang, S. & Giovannelli, D. 2019. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10:780. https://doi.org/10.3389/fmicb.2019.00780
  20. Park, J., Kwon, B. -O., Kim, M., Hong, S., Ryu, J., Song, S. J. & Khim, J. S. 2014. Microphytobenthos of Korean tidal flats: a review and analysis on floral distribution and tidal dynamics. Ocean Coast. Manag. 102:471-482. https://doi.org/10.1016/j.ocecoaman.2014.07.007
  21. Park, J. S., Simpson, A. G. B., Brown, S. & Cho, B. C. 2009. Ultrastructure and molecular phylogeny of two heterolobosean amoebae, Euplaesiobystra hypersalinica gen. et sp. nov. and Tulamoeba peronaphora gen. et sp. nov., isolated from an extremely hypersaline habitat. Protist 160:265-283. https://doi.org/10.1016/j.protis.2008.10.002
  22. Pedros-Alio, C., Calderon-Paz, J. I., MacLean, M. H., Medina, G., Marrase, C., Gasol, J. M. & Guixa-Boixereu, N. 2000. The microbial food web along salinity gradients. FEMS Microbiol. Ecol. 32:143-155. https://doi.org/10.1111/j.1574-6941.2000.tb00708.x
  23. Pinder, A. M., Halse, S. A., Shiel, R. J., Cale, D. J. & McRae, J. M. 2002. Halophile aquatic invertebrates in the wheatbelt region of south-western Australia. Verh. Internat. Verein. Limnol. 28:1687-1694.
  24. Round, F. E., Crawford, R. M. & Mann, D. G. 1990. Diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge, 747 pp.
  25. Sanchez-Lizaso, J. L., Romero, J., Ruiz, J., Gacia, E., Buceta, J. L., Invers, O.,Torquemada, Y. F., Max, J., Ruiz-Mateo, A. & Manzanera, M. 2008. Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination 221:602-607. https://doi.org/10.1016/j.desal.2007.01.119
  26. Sawai, Y. 2001. Distribution of living and dead diatoms in tidal wetlands of northern Japan: relations to taphonomy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 173:125-141. https://doi.org/10.1016/S0031-0182(01)00313-3
  27. Sorensen, K. B., Canfield, D. E. & Oren, A. 2004. Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70:1608-1616. https://doi.org/10.1128/AEM.70.3.1608-1616.2004
  28. Taukulis, F. E. & John, J. 2006. Diatoms as ecological indicators in lakes and streams of varying salinity from the wheatbelt region of Western Australia. J. R. Soc. West. Aust. 89:17-25.
  29. Williams, W. D. & Kokkinn, M. J. 1988. The biogeographical affinities of the fauna in episodically filled salt lakes: a study of Lake Eyre South, Australia. Hydrobiologia 158: 227-236. https://doi.org/10.1007/BF00026280
  30. Witkowski, A., Lange-Bertalot, H. & Metzeltin, D. 2000. Diatom flora of marine coasts I. In Lange-Bertalot, H. (Ed.) Iconographia Diatomologica. Annotated Diatom Micrographs. Vol. 7. Diversity-Taxonomy-Identification. Koeltz Scientific Books, Konigstein, pp. 1-925.
  31. Yamamoto, M., Chiba, T. & Tuji, A. 2017. Salinity responses of benthic diatoms inhabiting tidal flats. Diatom Res. 32:243-250. https://doi.org/10.1080/0269249x.2017.1366951

Cited by

  1. Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems vol.96, pp.6, 2021, https://doi.org/10.1111/brv.12780