DOI QR코드

DOI QR Code

Integrative taxonomic description of two new species of the Cocconeis placentula group (Bacillariophyceae) from Korea based on unialgal strains

  • Jahn, Regine (Botanischer Garten und Botanisches Museum Berlin, Freie Universitat Berlin) ;
  • Abarca, Nelida (Botanischer Garten und Botanisches Museum Berlin, Freie Universitat Berlin) ;
  • Kusber, Wolf-Henning (Botanischer Garten und Botanisches Museum Berlin, Freie Universitat Berlin) ;
  • Skibbe, Oliver (Botanischer Garten und Botanisches Museum Berlin, Freie Universitat Berlin) ;
  • Zimmermann, Jonas (Botanischer Garten und Botanisches Museum Berlin, Freie Universitat Berlin) ;
  • Mora, Demetrio (Botanischer Garten und Botanisches Museum Berlin, Freie Universitat Berlin)
  • Received : 2020.06.02
  • Accepted : 2020.08.01
  • Published : 2020.12.15

Abstract

Cocconeis coreana and C. sijunghoensis are described as new based on micromorphological and molecular data. C. coreana is represented by five unialgal cultures from four different freshwater bodies, two from North Korea and three from South Korea. C. sijunghoensis is represented by two unialgal cultures from a brackish water body in North Korea. Except for one, all of the strains auxosporulated and showed an almost quadrupling of size in length and width. Morphologically, these species with their two different elliptical valves belong to the Cocconeis placentula group. The raphe valve has striae with uniseriate areolae continuing across a pronounced submarginal hyaline rim to the edge of the valve. The sternum valve has uniseriate dash-like areolae continuously from the valve face until the valve edge. Micromorphologically, these species possess two different open valvocopulae: only the raphe valvocopula has fimbriae; the sternum valvocopula has none. Based on p-distances of currently available DNA sequence data, i.e., rbcL and 18SV4, both species are pronouncedly different from the epitype strain of C. placentula, with C. coreana closest to the published molecular data of the strain UTEX FD23 named C. placentula from Iowa, USA, while C. sijunghoensis is closest but not the same as the published molecular data of strain D36_012, the epitype strain of C. placentula from Berlin, Germany. Based on scanning electron microscope observations, differentiating features are discussed concerning valvocopula fimbriae, central area, areolation of the sternum valve and on the raphe valve especially between the submarginal hyaline rim and edge.

Keywords

Acknowledgement

The authors are grateful to Dr. Suh Byung Moon for his contribution to the description of these new species and for his longtime support in collecting diatoms from Korea. They also thank Jana Bansemer for work in the molecular lab, Juliane Bettig and Monika Lüchow at the SEM, and Michael Rodewald for help with the plates. The authors acknowledge funding by the Friends of the BGBM for cultivation support, the Deutsche Forschungsgemeinschaft for SEM [INST130/839-1FUGG], for Names Registration [JA874/8-1], and by the Bundesministerium für Bildung und Forschung [01LI1501E] for GBOL2 Diatoms, and by the Swedish Research Council for Sustainable Development (FORMAS) for cooperation.

References

  1. Abarca, N., Jahn, R., Zimmermann, J. & Enke, N. 2014. Does the cosmopolitan diatom Gomphonema parvulum (Kutzing) Kutzing have a biogeography? PLoS ONE 9:e86885. https://doi.org/10.1371/journal.pone.0086885
  2. Abarca, N., Zimmermann, J., Kusber, W. -H., Mora, D., Van, A. T., Skibbe, O. & Jahn, R. 2020. Defining the core group of the genus Gomphonema Ehrenberg with molecular and morphological methods. Bot. Lett. 167:114-159. https://doi.org/10.1080/23818107.2019.1694980
  3. Abdel-Rahman, M. E. & Sinada, F. A. 2016. An updated check-list of the phytoplankton of the White Nile at Khartoum, Sudan. Eur. Acad. Res. 4:5837-5845.
  4. Al-Handal, A. Y. & Al-Shaheen, M. A. 2019. Diatoms in the wetlands of Southern Iraq. Bibl. Diatomol. 67:1-252.
  5. Alverson, A. J. 2008. Molecular systematics and the diatom species. Protist 159:339-353. https://doi.org/10.1016/j.protis.2008.04.001
  6. Amutha, M. & Muralidharan, M. 2017. Diatom community structure along physicochemical gradients in upland river segments of Tamiraparani river system, South India. Int. J. Aquat. Biol. 5:12-21.
  7. Chen, S., Zhang, W., Zhang, J., Jeppesen, E., Liu, Z., Kociolek, J. P., Xu, X. & Wang, L. 2019. Local habitat heterogeneity determines the differences in benthic diatom metacommunities between different urban river types. Sci. Total Environ. 669:711-720. https://doi.org/10.1016/j.scitotenv.2019.03.030
  8. Costa, L. F., Wetzel, C. E., Ector, L. & Bicudo, D. C. 2020. Freshwater Cocconeis species (Bacillariophyceae) from Southeastern Brazil, and description of C. amerieuglypta sp. nov. Bot. Lett. 167:15-31. https://doi.org/10.1080/23818107.2019.1672103
  9. Droege, G., Barker, K., Astrin, J. J., Bartels, P., Butler, C., Cantrill, D., Coddington, J., Forest, F., Gemeinholzer, B., Hobern, D., Mackenzie-Dodds, J., Tuama, E. O, Petersen, G., Sanjur, O., Schindel, D. & Seberg, O. 2014. The global genome biodiversity network (GGBN) data portal. Nucleic Acids Res. 42:D607-D612. https://doi.org/10.1093/nar/gkt928
  10. Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  11. Gari, E. N. & Corigliano, M. C. 2007. Spatial and temporal variations of Cocconeis placentula var. euglypta (Ehrenberg.) 1854 Grunow, 1884 in drift and periphyton. Braz. J. Biol. 67:587-595. https://doi.org/10.1590/S1519-69842007000400002
  12. Geitler, L. 1973. Auxospore formation and systematics in pennate diatoms and the cytology of Cocconeis races. Osterr. Bot. Z. 122:299-321. https://doi.org/10.1007/BF01376232
  13. Gruenstaeudl, M. 2020. Annonex2embl: automatic preparation of annotated DNA sequences for bulk submissions to ENA. Bioinformatics 36:3841-3848. https://doi.org/10.1093/bioinformatics/btaa209
  14. Heinrich, C. G., Palacios-Penaranda, M. L., Pena-Salamanca, E., Schuch, M. & Lobo, E. A. 2019. Epilithic diatom flora in Cali River hydrographical basin, Colombia. Rodriguesia 70:e02062017.
  15. Hofmann, G., Werum, M. & Lange-Bertalot, H. 2013. Aufwuchs-Diatomeen im Sußwasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen fur die okologische Praxis. Uber 700 der haufigsten Arten und ihre Okologie. 2. Korrigierte Auflage. A.R.G. Gantner, Ruggell, 908 pp.
  16. Holmes, R. W., Crawford, R. M. & Round, F. E. 1982. Variability in the structure of the genus Cocconeis Ehr. (Bacillariophyta) with special reference to the cingulum. Phycologia 21:370-381. https://doi.org/10.2216/i0031-8884-21-3-370.1
  17. Jahn, R., Abarca, N., Gemeinholzer, B., Mora, D., Skibbe, O., Kulikovskiy, M., Gusev, E., Kusber, W.-H. & Zimmermann, J. 2017. Planothidium lanceolatum and Planothidium frequentissimum reinvestigated with molecular methods and morphology: four new species and the taxonomic importance of the sinus and cavum. Diatom Res. 32:75-107. https://doi.org/10.1080/0269249x.2017.1312548
  18. Jahn, R. & Kusber, W.-H. 2005 (continuously updated). Alga-Terra information system. Botanic Garden and Botanical Museum Berlin, Freie Universitat Berlin. Available from: http://www.algaterra.org. Accessed Mar 27, 2020.
  19. Jahn, R., Kusber, W.-H. & Romero, O. E. 2009. Cocconeis pediculus Ehrenberg and C. placentula Ehrenberg var. placentula (Bacillariophyta): typification and taxonomy. Fottea 9:275-288. https://doi.org/10.5507/fot.2009.027
  20. Jahn, R., Kusber, W.-H., Skibbe, O., Zimmermann, J., Van, A. T., Buczko, K. & Abarca, N. 2019. Gomphonella olivacea (Bacillariophyceae): a new phylogenetic position for a well-known taxon, its typification, new species and combinations. Plant Ecol. Evol. 152:219-247. https://doi.org/10.5091/plecevo.2019.1603
  21. Joh, G. 2012. Algal flora of Korea, Vol. 3. No. 7. Freshwater diatoms V. Available from: http://webbook.me.go.kr/DLi-File/099/008/5527836.pdf. Accessed Mar 27, 2020.
  22. Juttner, I., Bennion, H., Carter, C., Cox, E. J., Ector, L., Flower, R., Jones, V., Kelly, M. G., Mann, D. G., Sayer, C., Turner, J. A. & Williams, D. M. 2020. Freshwater diatom flora of Britain and Ireland. Amgueddfa Cymru: National Museum Wales. Available from: https://naturalhistory.museumwales.ac.uk/diatoms. Accessed Apr 19, 2020.
  23. Kaczmarska, I., Lovejoy, C., Potvin, M. & MacGillivary, M. 2009. Morphological and molecular characteristics of selected species of Minidiscus (Bacillariophyta, Thalassiosiraceae). Eur. J. Phycol. 44:461-475. https://doi.org/10.1080/09670260902855873
  24. Kaczmarska, I., Poulickova, A., Sato, S., Edlund, M. B., Idei, M., Watanabe, T. & Mann, D. G. 2013. Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Res. 28:263-294. https://doi.org/10.1080/0269249X.2013.791344
  25. Keck, F., Rimet, F., Franc, A. & Bouchez, A. 2016. Phylogenetic signal in diatom ecology: perspectives for aquatic ecosystems biomonitoring. Ecol. Appl. 26:861-872. https://doi.org/10.1890/14-1966
  26. Kermarrec, L., Franc, A., Rimet, F., Chaumeil, P., Humbert, J. F. & Bouchez, A. 2013. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms. Mol. Ecol. Resour. 13:607-619. https://doi.org/10.1111/1755-0998.12105
  27. Kobayasi, H., Idei, M., Mayama, S., Nagumo, T. & Osada, K. 2006. H. Kobayasi's Atlas of Japanese diatoms based on electron microscopy. Uchida Rakakuho Publishing, Tokyo, 531 pp.
  28. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  29. Lange-Bertalot, H., Hofmann, G., Werum, M. & Cantonati, M. 2017. Freshwater benthic diatoms of Central Europe: over 800 common species used in ecological assessment. Koeltz Botanical Books, Schmitten-Oberreifenberg, 942 pp.
  30. Leterme, S. C., Ellis, A. V., Mitchell, J. G., Buscot, M. -J., Pollet, T., Schapira, M. & Seuront, L. 2010. Morphological flexibility of Cocconeis placentula (Bacillariophyceae) nanostructure to changing salinity levels. J. Phycol. 46:715-719. https://doi.org/10.1111/j.1529-8817.2010.00850.x
  31. Mann, D. G., McDonald, S. M., Bayer, M. M., Droop, S. J. M., Chepurnov, V. A., Loke, R. E., Ciobanu, A. & Hans du Buf, J. M. 2004. The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43:459-482. https://doi.org/10.2216/i0031-8884-43-4-459.1
  32. Metzeltin, D., Lange-Bertalot, H. & Nergui, S. 2009. Diatoms in Mongolia. Iconographia Diatomologica, Vol. 20. Gantner Verlag, Ruggel, 691 pp.
  33. Mizuno, M. 1998. Sexual reproduction and auxospore formation of the marine monoraphid diatom Cocconeis pellucida. Diatom Res. 13:103-112. https://doi.org/10.1080/0269249X.1998.9705437
  34. Mora, D., Carmona, J., Jahn, R., Zimmermann, J. & Abarca, N. 2017. Epilithic diatom communities of selected streams from the Lerma-Chapala Basin, Central Mexico, with the description of two new species. PhytoKeys 88:39-69. https://doi.org/10.3897/phytokeys.88.14612
  35. Muller, J., Muller, K., Neinhuis, C. & Quandt, D. 2010. PhyDE: phylogenetic data editor. Computer program. Version 0.9971. Available from: http://www.phyde.de. Accessed Oct 26, 2016.
  36. Ouyang, L. -L., Pan, Y. -D., Huang, C. -M., Tang, Y., Du, J. & Xiao, W. -Y. 2016. Water quality assessment of benthic diatom communities for water quality in the subalpine karstic lakes of Jiuzhaigou, a world heritage site in China. J. Mt. Sci. 13:1632-1644. https://doi.org/10.1007/s11629-014-3392-7
  37. PhycoBank. 2017 (continuously updated). Registration of nomenclatural acts of algae. Botanic Garden and Botanical Museum Berlin. Available from: https://www.phycobank.org/. Accessed Mar 29, 2020.
  38. Plenkovic-Moraj, A., Kralj, L. & Gligora, M. 2008. Effect of current velocity on diatom on colonization glass slides in unpolluted headwater creek. Period. Biol. 110:291-295.
  39. Potapova, M. & Spaulding, S. 2013. Diatoms of North America. Cocconeis placentula sensu lato. Available from: https://diatoms.org/species/cocconeis_placentula. Accessed Apr 19, 2020.
  40. Poulickova, A., Vesela, J., Neustupa, J. & Skaloud, P. 2010. Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptocephala Kutz. (Bacillariophyceae) and morphological similar taxa. Protist 161:353-369. https://doi.org/10.1016/j.protis.2009.12.003
  41. Pumas, C., Pruetiworanan, S. & Peerapornpisal, Y. 2018. Diatom diversity in some hot springs of northern Thailand. Botanica 24:69-86. https://doi.org/10.2478/botlit-2018-0007
  42. Rasband, W. S. 1997-2016. ImageJ. Image processing and analysis in Java. Available from: https://imagej.nih.gov/ij/. Accessed Mar 29, 2020.
  43. Romero, O. E. & Jahn, R. 2013. Typification of Cocconeis lineata and Cocconeis euglypta (Bacillariophyta). Diatom Res. 28:175-184. https://doi.org/10.1080/0269249X.2013.770801
  44. Ruck, E. C. & Theriot, E. C. 2011. Origin and evolution of the canal raphe system in diatoms. Protist 162:723-737. https://doi.org/10.1016/j.protis.2011.02.003
  45. Skibbe, O., Zimmermann, J., Kusber, W.-H., Abarca, N., Buczko, N. & Jahn, R. 2018. Gomphoneis tegelensis sp. nov. (Bacillariophyceae): a morphological and molecular investigation based on selected single cells. Diatom Res. 33:251-262. https://doi.org/10.1080/0269249x.2018.1518835
  46. Stancheva, R. 2019. Cocconeis cascadensis, a new monoraphid diatom from mountain streams in Northern California, USA. Diatom Res. 33:471-483. https://doi.org/10.1080/0269249x.2019.1571531
  47. Taylor, J. C. & Cocquyt, C. 2016. Diatoms from the Congo and Zambezi basins: methodologies and identification of the genera. ABC Taxa and the Belgian Development Cooperation, Brussels, 364 pp.
  48. Toudjani, A. A., Celekli, A., Gumus, E. Y., Kayhan, S., Lekesiz, H. O. & Cetin, T. 2017. A new diatom index to assess ecological quality of running waters: a case study of water bodies in western Anatolia Turkey. Ann. Limnol. Int. J. Limnol. 53:333-343. https://doi.org/10.1051/limn/2017012
  49. Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J. & Smith, G. F. 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Koeltz Botanical Books, Glashutten, 254 pp.
  50. Wetzel, C. E., Beauger, A. & Ector, L. 2019. Cocconeis rouxii Heribaud & Brun a forgotten, but common benthic diatom species from the Massif Central, France. Bot. Lett. 166:221-233. https://doi.org/10.1080/23818107.2019.1584865
  51. Wortley, A. H. & Scotland, R. W. 2006. The effect of combining molecular and morphological data in published phylogenetic analyses. Syst. Biol. 55:677-685. https://doi.org/10.1080/10635150600899798
  52. Zimmermann, J., Abarca, N., Enk, N., Skibbe, O., Kusber, W.-H. & Jahn, R. 2014. Taxonomic reference libraries for environmental barcoding: a best practice example from diatom research. PLoS ONE 9:e114758. https://doi.org/10.1371/journal.pone.0114758
  53. Zimmermann, J., Jahn, R. & Gemeinholzer, B. 2011. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 11:173-192. https://doi.org/10.1007/s13127-011-0050-6