DOI QR코드

DOI QR Code

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu (Department of Production Engineering, Veer Surendra Sai University of Technology) ;
  • Padhan, Smita (Department of Production Engineering, Veer Surendra Sai University of Technology) ;
  • Das, Sudhansu Ranjan (Department of Production Engineering, Veer Surendra Sai University of Technology)
  • 투고 : 2020.04.30
  • 심사 : 2020.07.29
  • 발행 : 2020.12.10

초록

The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

키워드

참고문헌

  1. Abbas, A.T., Gupta, M.K., Soliman, M.S., Mia, M., Hegab, H., Luqman, M. and Pimenov, D.Y. (2019), "Sustainability assessment associated with surface roughness and power consumption characteristics in nanofluid MQL-assisted turning of AISI 1045 steel", J. Adv. Manufact. Technol., 105, 1311-1327. https://doi.org/10.1007/s00170-019-04325-6
  2. Aouici, H., Khellaf, A., Smaiah, S., Elbah, M., Fnides, B. and Yallese, M.A. (2017), "Comparative assessment of coated and uncoated ceramic tools on cutting force components and tool wear in hard turning of AISI H11 steel using Taguchi plan and RMS", Sadhana, 42(12), 2157-2170. https://doi.org/10.1007/s12046-017-0746-1
  3. Aouici, H., Elbah, M., Benkhelladi, A., Fnides, B., Boulanouar, L. and Yallese, M.A. (2019), "Comparison on various machinability aspects between mixed and reinforced ceramics when machining hardened steels", Mech. Industry, 20, 109. https://doi.org/10.1051/meca/2018052
  4. Asilturk, I. and Akkus, H. (2011), "Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method", Measurement, 44, 1697-1704. https://doi.org/10.1016/j.measurement.2011.07.003
  5. Asilturk, I. (2012), "Predicting surface roughness of hardened AISI 1040 based on cutting parameters using neural networks and multiple regression", J. Adv. Manufact. Technol., 63(1-4), 249-257. https://doi.org/10.1007/s00170-012-3903-z
  6. Bensouilah, H., Aouici, H., Meddour, I., Yallese, M.A., Mabrouki, T. and Girardin, F. (2016), "Performance of coated and uncoated mixed ceramic tools in hard turning process", Measurement, 82, 1-18. https://doi.org/10.1016/j.measurement.2015.11.042
  7. Chinchanikar, S. and Choudhury, S.K. (2014), "Hard turning using HiPIMS-coated carbide tools: Wear behavior under dry and minimum quantity lubrication (MQL)", Measurement, 55, 536-548. https://doi.org/10.1016/j.measurement.2014.06.002
  8. Costa, N.R., Lourenco, J. and Pereira, Z.L. (2011), "Desirability function approach: A review and performance evaluation in adverse conditions", Chemometrics Intelligent Lab. Syst., 107(2), 234-244. https://doi.org/10.1016/j.chemolab.2011.04.004
  9. Das, S.R., Dhupal, D. and Kumar, A. (2015), "Experimental investigation into machinability of hardened AISI 4140 steel using TiN coated ceramic tool", Measurement, 62, 108-126. https://doi.org/10.1016/j.measurement.2014.11.008
  10. Das, S.R., Kumar, A. and Dhupal, D. (2015), "Surface roughness analysis of hardened steel using TiN coated ceramic inserts", J. Machining Machinability Mater., 17(1), 22-38. https://dx.doi.org/10.1504/IJMMM.2015.069217
  11. Das, A., Patel, S.K., Hotta, T.K. and Biswal, B.B. (2018), "Statistical analysis of different machining characteristics of EN-24 alloy steel during dry hard turning with multilayer coated cermet inserts", Measurement, 134, 123-141. https://doi.org/10.1016/j.measurement.2018.10.065
  12. Das, A., Tirkey, N., Patel, S.K., Das, S.R. and Biswal, B.B. (2018), "A Comparison of Machinability in Hard Turning of EN-24 Alloy Steel Under Mist Cooled and Dry Cutting Environments with a Coated Cermet Tool", J. Failure Analysis Prevention, 19, 115-130. https://doi.org/10.1007/s11668-018-0574-6
  13. Davim, J. P. and Figueira, L. (2007), "Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques", Mater. Design, 28(4), 1186-1191. https://doi.org/10.1016/j.matdes.2006.01.011
  14. Davim, J. P. (2011), Machining of Hard Materials, SpringerVerlag London, London, United Kingdom
  15. Davim, J. P. (2019), Machining Fundamentals and Recent Advances, Springer-Verlag London, London, United Kingdom
  16. Elbah, M., Yallese, M.A., Aouici, H., Mabrouki, T. and Rigal, J.F. (2013), "Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel", Measurement, 46(9), 3041-3056. https://doi.org/10.1016/j.measurement.2013.06.018
  17. Elbah, M., Laouici, H., Benlahmidi, S., Nouioua, M. and Yallese, M.A. (2019), "Comparative assessment of machining environments (dry, wet and MQL) in hard turning of AISI 4140 steel with CC6050 tools", J. Adv. Manufact. Technol., 105, 2581-2597. https://doi.org/10.1007/s00170-019-04403-9
  18. Elmunafi, M.H.S., Mohd Yusof, N. and Kurniawan, D. (2015), "Effect of cutting speed and feed in turning hardened stainless steel using coated carbide cutting tool under minimum quantity lubrication using castor oil", Adv. Mech. Eng., 7(8), 1-7. https://doi.org/10.1177/1687814015600666
  19. Fnides, B., Aouici, H., Elbah, M., Boutabba, S. and Boulanouar, L. (2015), "Comparison between mixed ceramic and reinforced ceramic tools in terms of cutting force components modelling and optimization when machining hardened steel AISI 4140 (60 HRC)", Mech. Industry, 16(6), 609. https://doi.org/10.1051/meca/2015036
  20. Gaitonde, V. N., Karnik, S. R., Figueira, L. and Paulo Davim, J. (2009a), "Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts", J. Refractory Metals Hard Mater., 27(4), 754-763. https://doi.org/10.1016/j.ijrmhm.2008.12.007
  21. Gaitonde, V. N., Karnik, S. R., Figueira, L. and Davim, J. P. (2009b), "Analysis of Machinability During Hard Turning of Cold Work Tool Steel (Type: AISI D2)", Mater. Manufact. Processes, 24(12), 1373-1382. https://doi.org/10.1080/10426910902997415
  22. Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T. and Rigal, J.F. (2013), "On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations", Measurement, 46(5), 1671-1681. https://doi.org/10.1016/j.measurement.2012.12.016
  23. Keblouti, O., Boulanouar, L., Azizi, M.A. and Yallese, M.A. (2017), "Effects of coating material and cutting parameters on the surface roughness and cutting forces in dry turning of AISI 52100 steel", Struct. Eng. Mech., 61(4), 519-526. https://doi.org/10.12989/sem.2017.61.4.519
  24. Khan, Z.A., Shihab, S.K. and Siddiquee, A.N. (2015), "Analysis of chip morphology in dry hard turning of AISI 52100 alloy steel using RSM", J. Machining Machinability Mater., 17(6), 481-506. https://doi.org/10.1504/IJMMM.2015.073720
  25. Khan, A. M., Gupta, M. K., Hegab, H., Jamil, M., Mia, M., He, N., Song, Q., Liu, Z. and Pruncu, C. I. (2020a), "Energy-Based Cost Integrated Modelling and Sustainability Assessment of Al-GnP Hybrid Nanofluid Assisted Turning of AISI52100 Steel", J. Cleaner Product., 257, 120502. https://doi.org/10.1016/j.jclepro.2020.120502
  26. Khan, A. M., Jamil, M., Mia, M., He, N., Zhao, W. and Gong, L. (2020b), "Sustainability-based performance evaluation of hybrid nanofluid assisted machining", J. Cleaner Product., 257, 120541 https://doi.org/10.1016/j.jclepro.2020.120541
  27. Kumar, R., Sahoo, A.K., Mishra, P.C. and Das, R.K. (2018), "Measurement and machinability study under environmentally conscious spray impingement cooling assisted machining", Measurement, 135, 913-927. https://doi.org/10.1016/j.measurement.2018.12.037
  28. Kumar, R., Sahoo, A.K., Mishra, P.C. and Das, R.K. (2018), "Comparative investigation towards machinability improvement in hard turning using coated and uncoated carbide inserts: part I experimental investigation", Adv. Manufacturing, 6(1), 52-70. https://doi.org/10.1007/s40436-018-0215-z
  29. Kumar, P., Chauhan, S., Pruncu, C., Gupta, M., Pimenov, D., Mia, M. and Gill, H. (2019), "Influence of Different Grades of CBN Inserts on Cutting Force and Surface Roughness of AISI H13 Die Tool Steel during Hard Turning Operation", Materials, 12(1), 177. https://doi.org/10.3390/ma12010177
  30. Mhamdi, M.B., Salem, S.B., Boujelbene, M. and Bayraktar, E. (2013), "Experimental study of the chip morphology in turning hardened AISI D2 steel", J. Mech. Sci. Technol., 27(11), 3451-3461. https://doi.org/10.1007/s12206-013-0869-1
  31. Mia, M. and Dhar, N.R. (2016), "Prediction of surface roughness in hard turning under high pressure coolant using Artificial Neural Network", Measurement, 92, 464-474. https://doi.org/10.1016/j.measurement.2016.06.048
  32. Mia, M. and Dhar, N.R. (2017), "Modeling of Surface Roughness Using RSM, FL and SA in Dry Hard Turning", Arabian J. Sci. Eng., 43(3), 1125-1136. https://doi.org/10.1007/s13369-017-2754-1
  33. Mia, M., Razi, M.H., Ahmad, I., Mostafa, R., Rahman, S.M.S., Ahmed, D.H., and Dhar, N.R. (2017), "Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial neural network", J. Adv. Manufact. Technol., 91(9-12), 3211-3223. https://doi.org/10.1007/s00170-016-9978-1
  34. Mia, M. and Dhar, N.R. (2019), "Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition", Neural Comput. Appl., 31, 2349-2370. https://doi.org/10.1007/s00521-017-3192-4
  35. Mia, M., Morshed, M.S., Kharshiduzzaman, M., Razi, M.H., Mostafa, M.R., Rahman, S.M.S. and Kamal, A.M. (2018), "Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel", Measurement, 118, 43-51. https://doi.org/10.1016/j.measurement.2018.01.012
  36. Mia, M., Gupta, M.K., Singh, G., Krolczyk, G. and Pimenov, D.Y. (2018), "An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions", J. Cleaner Product., 187, 1069-1081. https://doi.org/10.1016/j.jclepro.2018.03.279
  37. Mia, M., Gupta, M.K., Pruncu, C.I., Sen, B., Khan, A.M., Jamil, M., Faraz, S., Asef, S., Imran, G.M.S. and Rahman, M.A. (2020), "Six sigma optimization of multiple machining characteristics in hard turning under dry, flood, MQL and solid lubrication", J. Production Syst. Manufact. Sci., 1(1), 1-12.
  38. More, A.S, Jiang, W., Brown, W.D. and Malshe, A.P. (2006), "Tool wear and machining performance of CBN-TiN coated carbide inserts and PCBN compact inserts in turning AISI 4340 hardened steel", J. Mater. Process Technol., 180(1-3), 253-262. https://doi.org/10.1016/j.jmatprotec.2006.06.013
  39. Naresh Babu, M., Anandan, V., Muthukrishnan, N., Arivalagar, A. A. and Dinesh Babu, M. (2019), "Evaluation of graphene based nano fluids with minimum quantity lubrication in turning of AISI D3 steel", SN Appl. Sci., 1(10), 1-11. https://doi.org/10.1007/s42452-019-1182-0
  40. Nouioua, M., Yallese, M.A., Khettabi, R., Belhadi, S., Bouhalais, M.L. and Girardin, F. (2017), "Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN)", J. Adv. Manufact. Technol., 93(5-8), 2485-2504. https://doi.org/10.1007/s00170-017-0589-2
  41. Panday, G., Ashraf, M.Z.I., Ibn Muneer, K., Hossain, K.S., Ashik, M.F.K. and Kamruzzaman, M. (2018), "Assessing near-dry lubrication (35 ml/h) performance in hard turning process of hardened (48 HRC) AISI 1060 carbon steel", J. Adv. Manufact. Technol., 99, 2045-2057. https://doi.org/10.1007/s00170-018-2629-y
  42. Panda, A., Sahoo, A.K. and Rout, A.K. (2016), "Investigations on surface quality characteristics with multi-response parametric optimization and correlations", Alexandria Eng. J., 55(2), 1625-1633. https://doi.org/10.1016/j.aej.2016.02.008
  43. Panda, A., Das, S.R. and Dhupal, D. (2017), "Surface Roughness Analysis for Economical Feasibility Study of Coated Ceramic Tool in Hard Turning Operation", Process Integration Optimization for Sustainability, 1(4), 237-249. https://doi.org/10.1007/s41660-017-0019-9
  44. Panda, A., Das, S.R. and Dhupal, D. (2020), "Machinability investigation and sustainability assessment in FDHT with coated ceramic tool", Steel Compos. Struct., 34(5), 681-698. https://doi.org/10.12989/scs.2020.34.5.681
  45. Rashid, W.B., Goel, S., Davim, J.P. and Joshi, S.N. (2015), "Parametric design optimization of hard turning of AISI 4340 steel (69 HRC)", J. Adv. Manufact. Technol., 82(1-4), 451-462. https://doi.org/10.1007/s00170-015-7337-2
  46. Saini, S., Ahuja, I.S. and Sharma, V.S. (2012), "Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel", J. Adv. Manufact. Technol., 65(5-8), 667-678. https://doi.org/10.1007/s00170-012-4206-0
  47. Sahoo, A.K. and Sahoo, B. (2012), "Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts", Measurement, 45(8), 2153-2165. https://doi.org/10.1016/j.measurement.2012.05.015
  48. Sharma, P., Sidhu, B.S. and Sharma, J. (2015), "Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication", J. Cleaner Product., 108, 72-79. https://doi.org/10.1016/j.jclepro.2015.07.122
  49. Shaw, M.C. (2005), Metal Cutting Principles, Oxford University Press, New York.
  50. Shihab, S.K., Khan, Z.A., Mohammad, A. and Siddiquee, A.N. (2014), "Optimization of surface integrity in dry hard turning using RSM", Sadhana, 39(5), 1035-1053. https://doi.org/10.1007/s12046-014-0263-4
  51. Shihab, S.K., Khan, Z.A., Mohammad, A. and Siddiquee, A.N. (2014), "Investigation of surface integrity during wet turning of hard alloy steel", J. Machining Machinability Mater., 16(1), 22-37. https://doi.org/10.1504/ijmmm.2014.063919
  52. Suresh, R., Basavarajappa, S., Gaitonde, V.N. and Samuel, G.L. (2012), "Machinability investigations on hardened AISI 4340 steel using coated carbide insert", J. Refractory Metals Hard Mater., 33, 75-86. https://doi.org/10.1016/j.ijrmhm.2012.02.019
  53. Suresh, R., Basavarajappa, S., Gaitonde, V.N., Samuel, G.L. and Davim, J.P. (2013), "State-of-the-art research in machinability of hardened steels", Proceedings of the Institution of Mechanical Engineers, Part B J. Eng. Manufact., 227(2), 191-209. https://doi.org/10.1177/0954405412464589
  54. Tang, L., Gao, C., Huang, J., Shen, H. and Lin, X. (2014), "Experimental investigation of surface integrity in finish dry hard turning of hardened tool steel at different hardness levels", J. Adv. Manufact. Technol., 77(9-12), 1655-1669. https://doi.org/10.1007/s00170-014-6484-1
  55. Tang, L., Yin, J., Sun, Y., Shen, H. and Gao, C. (2017), "Chip formation mechanism in dry hard high-speed orthogonal turning of hardened AISI D2 tool steel with different hardness levels", J. Adv. Manufact. Technol., 93(5-8), 2341-2356. https://doi.org/10.1007/s00170-014-6484-1
  56. Xiao, Z., Liao, X., Long, Z. and Li, M. (2016), "Effect of cutting parameters on surface roughness using orthogonal array in hard turning of AISI 1045 steel with YT5 tool", J. Adv. Manufact. Technol., 93(1-4), 273-282. https://doi.org/10.1007/s00170-016-8933-5