Acknowledgement
The authors express their sincere thanks to the reviewers and the editor-in-chief for their valuable suggestions for the improvement of the manuscript.
References
- Yu. A. Brychkov, On some properties of the Nuttall function Qμ,ν(a, b), Integral Transforms Spec. Funct., 25(1)(2014), 33-43.
- Yu. A. Brychkov and N. V. Savischenko, A special function of communication theory, Integral Transforms Spec. Funct., 26(6)(2015), 470-484. https://doi.org/10.1080/10652469.2015.1020307
- V. V. Bytev, M. Yu. Kalmykov and S.-O. Moch, HYPERDIRE: HYPERgeometric functions DIfferential REduction: MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: FD and FS Horn-type hypergeometric functions of three variables, Comput Phys. Commun., 185(2014), 3041-3058. https://doi.org/10.1016/j.cpc.2014.07.014
- G. B. Costa and L. E. Levine, Nth-order differential equations with finite polynomial solutions, Int. J. Math. Educ. Sci. Tech., 29(6)(1998), 911-914.
- P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison and E. Witten, Quantum fields and strings: a course for mathematicians, American Mathematical Society, 1999.
- R. Diaz and E. Pariguan, Quantum symmetric functions, Comm. Algebra, 33(6)(2005), 1947-1978. https://doi.org/10.1081/AGB-200063327
- R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15(2)(2007), 179-192.
- R. Diaz and C. Teruel, q, k-generalized gamma and beta function, J. Nonlinear Math. Phys., 12(1)(2005), 118-134. https://doi.org/10.2991/jnmp.2005.12.1.10
- H. W. Gould, Inverse series relations and other expansions involving Humbert polynomials, Duke Math. J., 32(4)(1965), 697-711. https://doi.org/10.1215/S0012-7094-65-03275-8
- F. B. Hildebrand, Introduction to numerical analysis, Second edition, Dover Publications INC., New York, 1987.
- P. Humbert, Some extensions of Pincherle's polynomials, Proc. Edinburgh Math. Soc., 39(1)(1920), 21-24. https://doi.org/10.1017/S0013091500035756
- P. Humbert, The confluent hypergeometric functions of two variables, Proc. R. Soc. Edinb., 41(1922), 73-96. https://doi.org/10.1017/S0370164600009810
- B. A. Kniehl and O. V. Tarasov, Finding new relationships between hypergeometric functions by evaluating Feynman integrals, Nuclear Phys. B, 854(3)(2012), 841-852. https://doi.org/10.1016/j.nuclphysb.2011.09.015
- M. Mignotte and D. Stefanescu, Polynomials: an algorithmic approach, Springer-Verlag, New York, 1999.
- G. Ozdemir, Y. Simsek, and G. V. Milovanovic, Generating functions for special polynomials and numbers including Apostol-type and Humbert-type polynomials, Mediterr. J. Math., 14(3)(2017), Paper No. 117, 17 pp. https://doi.org/10.1007/s00009-016-0808-3
- G. Polya and G. Szego, Problems and theorems in analysis I, Springer-Verlag, New York-Heidelberg and Berlin, 1972.
- E. D. Rainville, Special functions, The Macmillan Company, New York, 1960.
- P. C. Sofotasios , T. A. Tsiftsis, Yu. A. Brychkov, et al., Analytic expressions and bounds for special functions and applications in communication theory, IEEE Trans. Inform. Theory, 60(12)(2014), 7798-7823. https://doi.org/10.1109/TIT.2014.2360388
- H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Limited, John Willey and Sons, 1984.
- E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge University Press, Cambridge, 1927.