DOI QR코드

DOI QR Code

Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation

  • 투고 : 2020.09.06
  • 심사 : 2020.10.30
  • 발행 : 2020.12.25

초록

In this paper the linear elastic coupling between a 2 degree of freedom shear-type frame system and a rigid block is analytically and experimentally investigated. As demonstrated by some of the authors in previous papers, it is possible to choose a coupling system able to guarantee advantages, whatever the mechanical characteristics of the frame. The main purpose of the investigation is to validate the analytical model. The nonlinear equations of motion of the coupled system are obtained by a Lagrangian approach and successively numerically integrated under harmonic and seismic excitation. The results, in terms of gain graphs, maps and spectra, represent the ratio between the maximum displacements or drifts of the coupled and uncoupled systems as a function of the system's parameters. Numerical investigations show the effectiveness of the nonlinear coupling for a large set of parameters. Thus experimental tests are carried out to verify the analytical results. An electro-dynamic long-stroke shaker sinusoidally and seismically forces a shear-type 2 d.o.f frame coupled with a rigid aluminium block. The experimental investigations confirm the effectiveness of the coupling as predicted by the analytical model.

키워드

참고문헌

  1. Acikgoz, S., Ma, Q., Palermo, A. and DeJong, M. (2016), "Experimental identification of the dynamic characteristics of a flexible rocking structure", J. Earthq. Eng., 20(8), 1199-1221. https://doi.org/10.1080/13632469.2016.1138169.
  2. Aghagholizadeh, M. and Makris, N. (2018), "Earthquake response analysis of yielding structures coupled with vertically restrained rocking walls", Earthq. Eng. Struct. Dyn., 47(15), 2965-2984. https://doi.org/10.1002/eqe.3116.
  3. Aloisio, A., Alaggio, R. and Fragiacomo, M. (2019a), "Dynamic identification of a masonry facade from seismic response data based on an elementary Ordinary Least Squares approach", Eng. Struct., 197, 109415. https://doi.org/10.1016/j.engstruct.2019.109415.
  4. Aloisio, A., Antonacci, E., Fragiacomo, M. and Alaggio, R. (2020), "The recorded seismic response of the Santa Maria di Collemaggio basilica to low-intensity earthquakes", Int. J. Arch. Heritage, 1-19. https://doi.org/10.1080/15583058.2020.1802533.
  5. Aloisio, A., Di Battista, L., Alaggio, R. and Fragiacomo, M. (2019b), "Analysis of the forced dynamics of a masonry facade by means of input-output techniques and a linear regression model", COMPDYN 2019, 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering.
  6. Andreaus, U. (1990), "Sliding-uplifting response of rigid blocks to base excitation", Earthq. Eng. Struct. Dyn., 19(8), 1181-1196. https://doi.org/10.1002/eqe.4290190808.
  7. Brzeski, P., Kapitaniak, T. and Perlikowski, P. (2016), "The use of tuned mass absorber to prevent overturning of the rigid block during earthquake", Int. J. Struct. Stab. Dyn., 6(10), Article ID 1550075. https://doi.org/10.1142/S0219455415500753.
  8. Calio, I. and Marletta, M. (2003), "Passive control of the seismic response of art objects", Eng. Struct., 25, 1009-1018. https://doi.org/10.1016/S0141-0296(03)00045-2.
  9. Ceravolo, R., Pecorelli, M. and Zanotti Fragonara, L. (2016), "Semi-active control of the rocking motion of monolithic art objects", J. Sound Vib., 374, 1-16. https://doi.org/10.1016/j.jsv.2016.03.038.
  10. Ceravolo, R., Pecorelli, M. and Zanotti Fragonara, L. (2017), "Comparison of semi-active control strategies for rocking objects under pulse and harmonic excitations", Mech. Syst. Signal Pr., 90, 175-188. https://doi.org/10.1016/j.ymssp.2016.12.006.
  11. Collini, L., Garziera, R., Riabova, K., Munitsyna, M. and Tasora, A. (2016), "Oscillations control of rockingblock-type buildings by the addition of a tuned pendulum", Shock Vib., 2016, Article ID 8570538. https://doi.org/10.1155/2016/8570538.
  12. Contento, A. and Di Egidio, A. (2009), "Investigations into benefits of base isolation for NonSymmetric rigid blocks", Earthq. Eng. Struct. Dyn., 38, 849-866. https://doi.org/10.1002/eqe.870
  13. Contento, A. and Di Egidio, A. (2014), "On the use of base isolation for the protection of rigid bodies placed on a multi-storey frame under seismic excitation", Eng. Struct., 62-63, 1-10. https://doi.org/10.1016/j.engstruct.2014.01.019.
  14. Contento, A., Gardoni, P., Di Egidio, A. and de Leo, A. (2017), "Probabilistic models to assess the seismic safety of rigid block-like structures and the effectiveness of two safety devices", Procedia Eng., 199(2017), 1164-1169. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002431.
  15. Contento, A., Gardoni, P., Di Egidio, A. and de Leo, A. (2019), "Probabilistic models to assess the seismic safety of rigid block-like elements and the effectiveness of two safety devices", J. Struct. Eng., 145(11), 04019133. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002431.
  16. Corbi, O. (2006), "Laboratory investigation on sloshing water dampers coupled to rigid blocks with unilateral constraints", Int. J. Mech. Solid., 1(1), 29-40.
  17. Dar, A., Konstantinidis, D. and ElDakhakhni, W. (2018), "Seismic response of rocking frames with top support eccentricity", Earthq. Eng. Struct. Dyn., 47(12), 2496-2518. https://doi.org/10.1002/eqe.3096.
  18. de Leo, A., Simoneschi, G., Fabrizio, C. and Di Egidio, A. (2016), "On the use of a pendulum as mass damper to control the rocking motion of a non-symmetric rigid block", Meccanica, 51, 2727-2740. https://doi.org/10.1007/s11012-016-0448-5.
  19. DeJong, M. and Dimitrakopoulos, E. (2014), "Dynamically equivalent rocking structures", Earthq. Eng. Struct. Dyn., 43(10), 1543-1563. https://doi.org/10.1002/eqe.2410.
  20. Di Egidio, A. and Contento, A. (2009), "Base isolation of sliding-rocking non-symmetyric rigid blocks subjected to impulsive and seismic excitations", Eng. Struct., 31, 2723-2734. https://doi.org/10.1016/j.engstruct.2009.06.021
  21. Di Egidio, A. and Contento, A. (2010), "Seismic response of a non-symmetric rigid block on a constrained oscillating base", Eng. Struct., 32, 3028-3039. https://doi.org/10.1016/j.engstruct.2010.05.022.
  22. Di Egidio, A., Alaggio, R., Aloisio, A., de Leo, A., Contento, A. and Tursini, M. (2019a), "Analytical and experimental investigation into the effectiveness of a pendulum dynamic absorber to protect rigid blocks from overturning", Int. J. Nonlin. Mech., 115, 1-10. https://doi.org/10.1016/j.ijnonlinmec.2019.04.011.
  23. Di Egidio, A., Alaggio, R., Contento, A., Tursini, M. and Della Loggia, E. (2015), "Experimental characterization of the overturning of three-dimensional square based rigid block", Int. J. Nonlin. Mech., 69, 137-145. https://doi.org/10.1016/j.ijnonlinmec.2014.12.003.
  24. Di Egidio, A., Contento, A., Fabrizio, C. and de Leo, A. (2019b), "Visco-elastic coupling between a linear two-dof system and a rocking rigid block to improve the dynamic response", J. Phys.: Conf. Ser., 1264(2019), 012029. https://doi.org/10.1088/1742-6596/1264/1/012029
  25. Di Egidio, A., Contento, A., Olivieri, C. and de Leo, A. (2020a), "Protection from overturning of rigid blocklike objects with Linear Quadratic Regulator active control", Struct. Control Hlth Monit., 27, e2598. https://doi.org/10.1002/stc.2598.
  26. Di Egidio, A., de Leo, A. and Contento, A. (2019c), "The use of a pendulum dynamic mass absorber to protect a trilithic symmetric system from the overturning", Math. Prob. Eng., 2019, Article ID 4843738, 14. https://doi.org/10.1155/2019/4843738.
  27. Di Egidio, A., de Leo, A. and Simoneschi, G. (2018), "Effectiveness of mass-damper dynamic absorber on rocking block under one-sine pulse ground motion", Int. Limit. Nonlin. Mech., 98, 154-162. https://doi.org/10.1016/j.ijnonlinmec.2017.10.015.
  28. Di Egidio, A., Pagliaro, S., Fabrizio, C. and de Leo, A. (2019d), "Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block", Coupl. Syst. Mech., 8(4), 351-375. https://doi.org/10.12989/csm.2019.8.4.351.
  29. Di Egidio, A., Pagliaro, S., Fabrizio, C. and de Leo, A. (2020b), "Seismic performance of frame structures coupled with an external rocking wall", Eng. Struct., 224, 111207. https://doi.org/10.1016/j.engstruct.2020.111207.
  30. Di Egidio, A., Simoneschi, G., Olivieri, C. and de Leo, A. (2014a), "Protection of slender rigid blocks from the overturning by using an active control system", Proceedings of the XXIII Conference The Italian Association of Theoretical and Applied Mechanics.
  31. Di Egidio, A., Zulli, D. and Contento, A. (2014b), "Comparison between the seismic response of 2D and 3D models of rigid blocks", Earthq. Eng. Eng. Vib., 13, 151-162. https://doi.org/10.1007/s11803-014-0219-z.
  32. Diamantopoulos, S. and Fragiadakis, M. (2019), "Seismic response assessment of rocking systems using single degreeoffreedom oscillators", Earthq. Eng. Struct. Dyn., 48(7), 689-708. https://doi.org/10.1002/eqe.3157.
  33. Dimitrakopoulos, E. and DeJong, M. (2012), "Overturning of retrofitted rocking structures under pulse-type excitations", J. Eng. Mech., 138, 963-972. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000410.
  34. Fabrizio, C., de Leo, A. and Di Egidio, A. (2017a), "Structural disconnection as a general technique to improve the dynamic and seismic response of structures: a basic model", Procedia Eng., 199, 1635-1640. https://doi.org/10.1016/j.proeng.2017.09.086.
  35. Fabrizio, C., de Leo, A. and Di Egidio, A. (2019), "Tuned mass damper and base isolation: a unitary approach for the seismic protection of conventional frame structures", J. Eng. Mech., 145(4), 04019011. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001581.
  36. Fabrizio, C., Di Egidio, A. and de Leo, A. (2017b), "Top disconnection versus base disconnection in structures subjected to harmonic base excitation", Eng. Struct., 152, 660-670. https://doi.org/10.1016/j.engstruct.2017.09.041.
  37. Grigorian, C. and Grigorian, M. (2015), "Performance control and efficient design of rocking-wall moment frames", J. Struct. Eng., 142(2), 04015193. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001411.
  38. Housner, G. (1963), "The behavior of inverted pendulum structures during earthquakes", Bull. Seismol. Soc. Am., 53(2), 404417.
  39. Huang, W., McClurea, G. and Hussainzadab, N. (2013), "Seismic interactions between suspended ceilings and nonstructural partition walls", Coupl. Syst. Mech., 2(4), 329-348. https://doi.org/10.12989/csm.2013.2.4.329.
  40. Kalliontzis, D., Sritharan, S. and Schultz, A. (2016), "Improved coefficient of restitution estimation for free rocking members", J. Struct. Eng., 142, 06016002. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001598.
  41. Khatiwada, S., Nawawi and Chouw, N. (2013), "A shake table investigation on interaction between buildings in a row", Coupl. Syst. Mech., 2(2), 175-190. https://doi.org/10.12989/csm.2013.2.2.175.
  42. Kounadis, A. (2014), "Rocking instability of free-standing statues atop slender viscoelastic columns under ground motion", Soil Dyn. Earthq. Eng., 63(9), 83-91. https://doi.org/10.1016/j.soildyn.2014.01.021.
  43. Kounadis, A. (2015), "New findings in the rocking instability of one and two rigid block systems under ground motion", Meccanica, 50(9), 2219-2238. https://doi.org/10.1007/s11012-015-0167-3.
  44. Kounadis, A. (2018), "The effect of sliding on the rocking instability of multi-rigid block assemblies under ground motion", Soil Dyn. Earthq. Eng., 104, 1-14. https://doi.org/10.1016/j.soildyn.2017.03.035.
  45. Kounadis, A.N. (2013), "Parametric study in rocking instability of a rigid block under harmonic ground pulse: a unified approach", Soil Dyn. Earthq. Eng., 45, 125143. https://doi.org/10.1016/j.soildyn.2012.10.002.
  46. Makris, N. and Aghagholizadeh, M. (2017), "The dynamics of an elastic structure coupled with a rocking wall", Soil Dyn. Earthq. Eng., 46, 945-954. https://doi.org/10.1002/eqe.2838.
  47. Makris, N. and Zhang, J. (2001), "Rocking response of anchored blocks under pulse-type motions", J. Eng. Mech., 127(5), 484-493. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(484).
  48. Muratovi, A. and Ademovi, N. (2015), "Influence of masonry infill on reinforced concrete frame structures seismic response", Coupl. Syst. Mech., 4(2), 173-189. http://dx.doi.org/10.12989/csm.2015.4.2.173.
  49. Ormeo, M., Tam Larkin, T. and Chouw, N. (2012), "Influence of uplift on liquid storage tanks during earthquakes", Coupl. Syst. Mech., 1(4), 311-324. http://dx.doi.org/10.12989/csm.2012.1.4.311.
  50. Pompei, A., Scalia, A. and Sumbatyan, M. (1998), "Dynamics of rigid block due to horizontal ground motion", J. Eng. Mech., 124(7), 713-717. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:7(713).
  51. Psycharis, I.N., Fragiadakis, M. and Stefanou, I. (2013), "Seismic reliability assessment of classical columns subjected to nearfault ground motions", Earthq. Eng. Struct. Dyn., 42(14), 2061-2079. https://doi.org/10.1002/eqe.2312.
  52. Shenton, H. (1996), "Criteria for initiation of slide, rock, and slide-rock rigid-body modes", J. Eng. Mech., 122(7), 690-693. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(690).
  53. Shenton, H. and Jones, N. (1991), "Base excitation of rigid bodies. I: Formulation", J. Eng. Mech., 117(10), 2286-2306. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2286).
  54. Simoneschi, G., de Leo, A. and Di Egidio, A. (2017a), "Effectiveness of oscillating mass damper system in the protection of rigid blocks under impulsive excitation", Eng. Struct., 137, 285-295. https://doi.org/10.1016/j.engstruct.2017.01.069.
  55. Simoneschi, G., Geniola, A., de Leo, A. and Di Egidio, A. (2017b), "On the seismic performances of rigid blocks coupled with an oscillating mass working as TMD", Earthq. Eng. Struct. Dyn., 46, 1453-1469. https://doi.org/10.1002/eqe.2864.
  56. Simoneschi, G., Olivieri, C., de Leo, A. and Di Egidio, A. (2018), "Pole placement method to control the rocking motion of rigid blocks", Eng. Struct., 167, 39-47. https://doi.org/10.1016/j.engstruct.2018.04.016.
  57. Sorrentino, L., AlShawa, O. and Decanini, L. (2011), "The relevance of energy damping in unreinforced masonry rocking mechanisms. Experimental and analytic investigations", Bull. Earthq. Eng., 9(5), 1617-1642. https://doi.org/10.1007/s10518-011-9291-1.
  58. Spanos, P. and Koh, A. (1984), "Rocking of rigid blocks due to harmonic shaking", J. Eng. Mech., 110, 1627-1642. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:11(1627).
  59. Spanos, P. and Koh, A. (1986), "Analysis of block random rocking", Soil Dyn. Earthq. Eng., 5, 178-183. https://doi.org/10.1016/0267-7261(86)90021-7.
  60. Spanos, P., Di Matteo, A., Pirrotta, A. and Di Paola, M. (2017), "Rocking of rigid block on nonlinear flexible foundation", Int. J. Nonlin. Mech., 94, 362-374. https://doi.org/10.1016/j.ijnonlinmec.2017.06.005.
  61. Taniguchi, T. (2002), "Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion", Earthq. Eng. Struct. Dyn., 31, 1481-1500. https://doi.org/10.1002/eqe.170.
  62. Ther, T. and Kollar, L. (2016), "Refinement of Housners model on rocking blocks", Bull. Earthq. Eng., 15, 2305-2319. https://doi.org/10.1016/S0267-7261(02)00115-X.
  63. Tung, C. (2007), "Initiation of motion of a free-standing body to base excitation", Earthq. Eng. Struct. Dyn., 36, 1431-1439. https://doi.org/10.1002/eqe.703.
  64. Vassiliou, M. and Makris, N. (2012), "Analysis of the rocking response of rigid blocks standing free on a seismically isolated base", Earthq. Eng. Struct. Dyn., 41(2), 177-196. https://doi.org/10.1002/eqe.1124.
  65. Vassiliou, M., K.R., M. and Stojadinovi, B. (2014), "Dynamic response analysis of solitary flexible rocking bodies: modeling and behavior under pulselike ground excitation", Earthq. Eng. Struct. Dyn., 43(10), 1463-1481. https://doi.org/10.1002/eqe.2406.
  66. Voyagaki Ioannis, E., Psycharis, I. and Mylonakis, G. (2013), "Rocking response and overturning criteria for free standing rigid blocks to singlelobe pulses", Soil Dyn. Earthq. Eng., 46, 85-95. https://doi.org/10.1016/j.soildyn.2012.11.010.
  67. Wada, A., Qu, Z., Motoyui, S. and Sakata, H. (2011), "Seismic retrofit of existing SRC frames using rocking walls and steel dampers", Front. Arch. Civil Eng. China, 5(3), 259266. https://doi.org/10.1007/s11709-011-0114-x.
  68. Yim, C., Chopra, A. and Penzien, J. (1980), "Rocking response of rigid blocks to earthquakes", Earthq. Eng. Struct. Dyn., 438(6), 565-587. https://doi.org/10.1002/eqe.4290080606.
  69. Zhang, J. and Makris, N. (2001), "Rocking response of free-standing blocks under cycloidal pulses", J. Eng. Mech., 127(5), 473-483. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(473).
  70. Zulli, D., Contento, A. and Di Egidio, A. (2012), "Three-dimensional model of rigid block with a rectangular base subject to pulse-type excitation", Int. J. Nonlin. Mech., 47, 679-687. https://doi.org/10.1016/j.ijnonlinmec.2011.11.004.