DOI QR코드

DOI QR Code

Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation

  • Received : 2019.11.16
  • Accepted : 2020.09.30
  • Published : 2020.12.25

Abstract

The effect of porosity on the thermo-mechanical behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper using new refined hyperbolic shear deformation plate theory. Both even and uneven distribution of porosity are taken into account and the effective properties of FG plates with porosity are defined by theoretical formula with an additional term of porosity. The present formulation is based on a refined higher order shear deformation theory, which is based on four variables and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the FG plate and takes into account the various distribution shape of porosity. The elastic foundation is described by the Winkler-Pasternak model. Anew modified power-law formulation is used to describe the material properties of FGM plates in the thickness direction. The closed form solutions are obtained by using Navier technique. The present results are verified in comparison with the published ones in the literature. The results show that the dimensionless and stresses are affected by the porosity volume fraction, constituent volume fraction, and thermal load.

Keywords

Acknowledgement

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n°A01L02UN140120200002 and by the University of Tiaret, in Algeria.

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267.
  2. Abdelhak, Z., Hadji, L., Khelifa, Z., Hassaine Daouadji, T. and Adda Bedia, E.A. (2016), "Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory", Wind Struct., 22(3), 291-305. https://doi.org/10.12989/was.2016.22.3.291.
  3. Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., 5(4), 223. https://doi.org/10.12989/amr.2016.5.4.223.
  4. Adim, B., Daouadji, T.H. and Abbes, B. (2016), "Buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary conditions", Int. Appl. Mech., 52(6), 661-676. https://doi.org/10.1007/s10778-016-0787-x.
  5. Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Indus., 17(5), 512. https://doi.org/10.1051/meca/2015112.
  6. Adim, B., Daouadji, T.H., Rabia, B. and Hadji, L. (2016), "An efficient and simple higher order shear deformation theory for bending analysis of composite plates under various boundary conditions", Earthq. Struct., 11(1), 63-82. https://doi.org/10.12989/eas.2016.11.1.063.
  7. Babaei, H., Kiani, Y. and Eslami, M.R. (2018), "Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment", Thin Wall. Struct., 132, 48-57. https://doi.org/10.1016/j.tws.2018.08.008.
  8. Banh, T.T., Shin, S. and Lee, D. (2018), "Topology optimization for thin plate on elastic foundations by using multi-material", Steel Compos. Struct., 27(2), 177-184. https://doi.org/10.12989/scs.2018.27.2.177.
  9. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
  10. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032.
  11. Benferhat, R., Daouadji, T.H. and Adim, B. (2016), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., 5(2), 107. https://doi.org/10.12989/amr.2016.5.2.107.
  12. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2015), "A higher order shear deformation model for bending analysis of functionally graded plates", Tran. Ind. Inst. Metal., 68(1), 7-16. https://doi.org/10.1007/s12666-014-0428-1.
  13. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002.
  14. Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
  15. Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.
  16. Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. https://doi.org/10.12989/sem.2019.70.5.535.
  17. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for antisymmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Adv. Mater. Res., 7(2), 119. https://doi.org/10.12989/amr.2018.7.2.119.
  18. Bouderba, B. (2018), "Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory", Steel Compos. Struct., 27(3), 311-325. https://doi.org/10.12989/scs.2018.27.3.311.
  19. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085.
  20. Daouadj, T. H. and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. http://dx.doi.org/10.12989/sem.2017.61.1.049.
  21. Daouadji, T.H. (2016), "Theoretical analysis of composite beams under uniformly distributed load", Adv. Mater. Res., 5(1), 1. https://doi.org/10.12989/amr.2016.5.1.001.
  22. Daouadji, T.H. and Adim, B. (2016), "An analytical approach for buckling of functionally graded plates", Adv. Mater. Res., 5(3), 141. https://doi.org/10.12989/amr.2016.5.3.141.
  23. Daouadji, T.H. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygro-thermomechanical loading with analytical validation", Adv. Mater. Res., 5(1), 35. https://doi.org/10.12989/amr.2016.5.1.035.
  24. Daouadji, T.H. and Tounsi, A. (2013), "A new higher order shear deformation model for static behavior of functionally graded plates", Adv. Appl. Math. Mech., 5(3), 351-364. https://doi.org/10.1017/S2070073300002721.
  25. Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupl. Syst. Mech., 5(3), 269-283. https://doi.org/10.12989/csm.2017.5.3.269.
  26. Daouadji, T.H., Hadj Henni, A., Tounsi, A. and El Abbes, A.B. (2012), "A new hyperbolic shear deformation theory for bending analysis of functionally graded plates", Model. Simul. Eng., 2012. https://doi.org/10.1155/2012/159806.
  27. Daouadji, T.H., Henni, A.H., Tounsi, A. and El Abbes, A.B. (2013), "Elasticity solution of a cantilever functionally graded beam", Appl. Compos. Mater., 20(1), 1-15. https://doi.org/10.1007/s10443-011-9243-6.
  28. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  29. Esfahani, S.E., Kiani, Y. and Eslami, M.R. (2013), "Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations", Int. J. Mech. Sci., 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007.
  30. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72(1), 61-70. https://doi.org/10.12989/sem.2019.72.1.061.
  31. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. http://dx.doi.org/10.12989/scs.2014.16.5.507.
  32. Hadji, L., Khelifa, Z., Daouadji, T.H. and Bedia, E.A. (2015), "Static bending and free vibration of FGM beam using an exponential shear deformation theory", Coupl. Syst. Mech., 4(1), 99-114. http://dx.doi.org/10.12989/csm.2015.4.1.099.
  33. Heshmati, M. and Daneshmand, F. (2019), "Vibration analysis of non-uniform porous beams with functionally graded porosity distribution", Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., 233(8), 1678-1697. https://doi.org/10.1177/1464420718780902.
  34. Isavand, S., Bodaghi, M., Shakeri, M. and Mohandesi, J.A. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings", Steel Compos. Struct., 18(1), 1-28. https://doi.org/10.12989/scs.2015.18.1.001.
  35. Joshan, Y.S., Grover, N. and Singh, B.N. (2018), "Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates", Steel Compos. Struct., 27(6), 761-775. https://doi.org/10.12989/.2018.27.6.761.
  36. Koizumi, M. (1993), "The concept of FGM", Ceram Tran, Funct Grad Mater., 34, 3-10.
  37. Liu, P., Bui, T.Q., Zhu, D., Yu, T.T., Wang, J.W., Yin, S.H. and Hirose, S. (2015), "Buckling failure analysis of cracked functionally graded plates by a stabilized discrete shear gap extended 3-node triangular plate element", Compos. Part B: Eng., 77, 179-193. https://doi.org/10.1016/j.compositesb.2015.03.036.
  38. Moreno, D., Fernández, M. and Esquivias, P.M. (2017), "A comparison of closed-form and finite-element solutions for heat transfer in a nearly horizontal, unglazed flat plate PVT water collector: Performance assessment", Solar Energy, 141, 11-24. https://doi.org/10.1007/s11029-019-09803-2.
  39. Pakar, I., Bayat, M. and Cveticanin, L. (2018), "Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation", Steel Compos. Struct., 26(4), 453-461. https://doi.org/10.12989/scs.2018.26.4.453.
  40. Pandey, S. and Pradyumna, S. (2017), "Stress analysis of functional graded sandwich beams subjected to thermal shock", Procedia Eng., 173, 837-843. https://doi.org/10.1016/j.proeng.2016.12.121.
  41. Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosuedarstvennoe Izadatelstvo Literatim po Stroitelstvu i Arkhitekture, 1, 1-56.
  42. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Adv. Mater. Res., 7(1), 29. https://doi.org/10.12989/amr.2018.7.1.029.
  43. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. https://doi.org/10.12989/eas.2019.16.5.601.
  44. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. http://dx.doi.org/10.12989/sem.2019.72.3.293.
  45. Reddy, J.N. and Cheng, Z.Q. (2001), "Three-dimensional thermomechanical deformations of functionally graded rectangular plates", Eur. J. Mech.-A/Solid., 20(5), 841-855. https://doi.org/10.1016/S0997-7538(01)01174-3.
  46. Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Mohammadi, M.P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach", Thin Wall. Struct., 120, 366-377. https://doi.org/10.1016/j.tws.2017.08.003.
  47. Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17(2), 99-129. https://doi.org/10.1177/1099636214554904.
  48. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech.-A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  49. Tlidji, Y., Daouadji, T.H., Hadji, L., Tounsi, A. and Bedia, E.A.A. (2014), "Elasticity solution for bending response of functionally graded sandwich plates under thermomechanical loading", J. Therm. Stress., 37(7), 852-869. https://doi.org/10.1080/01495739.2014.912917.
  50. Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022.
  51. Vu, T.V., Khosravifard, A., Hematiyan, M.R. and Bui, T.Q. (2018), "A new refined simple TSDT-based effective meshfree method for analysis of through-thickness FG plates", Appl. Math. Model., 57, 514-534. https://doi.org/10.1016/J.APM.2018.01.004.
  52. Wang, Y., Ye, C. and Zu, J.W. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Model., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
  53. Winkler, E. (1867), "Die lehre von der elasticitaet und festigkeit", Prag Domin-icus, Prague.
  54. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermomechanical loadings using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753.
  55. Yin, S., Yu, T., Bui, T. Q., Zheng, X. and Tanaka, S. (2016), "In-plane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis", Compos. Part B: Eng., 106, 273-284. https://doi.org/10.1016/j.compositesb.2016.09.008.
  56. Yin, S., Yu, T., Bui, T.Q., Liu, P. and Hirose, S. (2016), "Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets", Comput. Struct., 177, 23-38. https://doi.org/10.1016/j.compstruc.2016.08.005.
  57. Yu, T., Yin, S., Bui, T.Q., Liu, C. and Wattanasakulpong, N. (2017), "Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads", Compos. Struct., 162, 54-69. https://doi.org/10.1016/j.compstruct.2016.11.084.
  58. Zenkour, A.M. (2010), "Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations", Compos. Struct., 93, 234-238. https://doi.org/10.1016/j.compstruct.2010.04.017.
  59. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.

Cited by

  1. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2020, https://doi.org/10.12989/acd.2021.6.2.117
  2. A new model for adhesive shear stress in damaged RC cantilever beam strengthened by composite plate taking into account the effect of creep and shrinkage vol.79, pp.5, 2020, https://doi.org/10.12989/sem.2021.79.5.531