DOI QR코드

DOI QR Code

An efficient vibration control strategy for reliability enhancement of HAWT blade

  • Sajeer, M. Mohamed (Department of Civil Engineering, Indian Institute of Technology Guwahati) ;
  • Chakraborty, Arunasis (Department of Civil Engineering, Indian Institute of Technology Guwahati) ;
  • Das, Sourav (School of Engineering, The University of British Columbia)
  • Received : 2019.10.27
  • Accepted : 2020.10.21
  • Published : 2020.12.25

Abstract

This paper investigates the safety of the wind turbine blade against excessive deformation. For this purpose, the performance of the blade in the along-wind direction is improved by longitudinal stiffener made of shape memory alloy. The rationale behind the selection of this smart material is due to its ability to offer excellent thermo-mechanical behaviour at low strain. Here, Liang-Roger model is adopted for vibration control, and the super-elastic effects are utilised for blade stiffening. Turbulent wind fields are generated at the hub height using TurbSim and the corresponding loads are evaluated using blade element momentum theory. An efficient switching algorithm is developed along with performance curves that enable the designer to select an optimal mode of heating depending upon the operational scenario. Numerical results presented in this paper clearly demonstrate the performance envelope of the proposed stiffener and its influence on the reliability of the blade.

Keywords

References

  1. Agarwala, R. and Ro, P.I. (2015), "Separated pitch control at tip: Innovative blade design explorations for large MW wind turbine blades", J. Wind Energy, 2015(895974), 1-12. https://doi.org/10.1155/2015/895974.
  2. Anderson, P.M. and Bose, A. (1983), "Stability simulation of wind turbine systems", IEEE Trans. Power Appar. Syst., 12, 3791-3795. https://doi.org/10.1109/mper.1983.5520133.
  3. Antoni, J., Bonnardot, F., Raad, A. and El Badaoui, M. (2004), "Cyclostationary modelling of rotating machine vibration signals", Mech. Syst. Signal Process., 18(6), 1285-1314. https://doi.org/10.1016/s0888-3270(03)00088-8.
  4. Berg, D.E., Wilson, D.G., Resor, B.R., Barone, M.F., Berg, J.C., Kota, S. and Ervin, G. (2009), "Active aerodynamic blade load control impacts on utility-scale wind turbines (No. SAND20092650C)", Sandia National Lab (SNL-NM), USA.
  5. Bossanyi, E.A. (2003a), "Individual blade pitch control for load reduction", Wind Energy, 6(2), 119-128. https://doi.org/10.1002/we.76.
  6. Bossanyi, E.A. (2003b), "Wind turbine control for load reduction", Wind Energy, 6(3), 229-244. https://doi.org/10.1002/we.95.
  7. Bottasso, C.L., Croce, A., Gualdoni, F. and Montinari, P. (2016), "Load mitigation for wind turbines by a passive aeroelastic device", J. Wind Eng. Ind. Aerodyn., 148, 57-69. https://doi.org/10.1016/j.jweia.2015.11.001.
  8. Branner, K. and Ghadirian, A. (2014), "Database about blade faults", Ph.D. Dissertation, DTU Wind Energy, Denmark.
  9. Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E. (2011), Wind Energy Handbook, John Wiley & Sons, Chichester, West Sussex, UK. https://doi.org/10.1002/9781119992714.
  10. Chaari, F. and Haddar, M. (2014), Cyclostationarity: Theory and Methods, Springer, Zurich, Switzerland. https://doi.org/10.1007/978-3-319-04187-2_8.
  11. Chan, Y.T. (1995), Wavelet Basics, Springer, Boston, USA. https://doi.org/10.1007/978-1-4615-2213-3.
  12. Cheng, T.H., Ren, M., Li, Z.Z. and Shen, Y.D. (2015), "Vibration and damping analysis of composite fiber-reinforced wind blade with viscoelastic damping control", Adv. Mater. Sci. Eng., 2015(146949), 1-6. https://doi.org/10.1155/2015/146949.
  13. Das, S., Sajeer, M. and Chakraborty, A. (2019), "Vibration control of horizontal axis offshore wind turbine blade using SMA stiffener", Smart Mater. Struct., 28(9), 095025. https://doi.org/10.1088/1361-665x/ab1174.
  14. Dimitrov, N.K., Staerdahl, J., Friis-Hansen, P. and Berggreen, C. (2013), "Structural reliability of wind turbine blades: Design methods and evaluation", Ph.D. Dissertation, Technical University of Denmark, Kongens Lyngby, Denmark.
  15. DNVGL-ST-0376 (2015), Rotor Blades for Wind Turbines, DET Norsk Veritas.
  16. Fitzgerald, B., Sarkar, S. and Staino, A. (2018), "Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)", J. Sound Vib., 419, 103-122. https://doi.org/10.1016/j.jsv.2017.12.026.
  17. Fitzgerald, B., Staino, A., and Basu, B. (2019), "Wavelet-based individual blade pitch control for vibration control of wind turbine blades", Struct. Control Health Monit., 26(1), e2284. https://doi.org/10.1002/stc.2284.
  18. Gardner, W.A. (1994), "Cyclostationarity in communications and signal processing", Statistical Signal Processing Inc. Yountville, USA.
  19. Gardner, W.A., Napolitano, A. and Paura, L. (2006), "Cyclostationarity: Half a century of research", Signal Process, 86(4), 639-697. https://doi.org/10.1016/j.sigpro.2005.06.016.
  20. Haghdoust, P., Cinquemani, S. and Conte, A.L. (2018), "Preliminary studies on SMA embedded wind turbine blades for passive control of vibration", Proceedings of the Active and Passive Smart Structures and Integrated Systems SPIE, California, USA, August.
  21. Harris, M., Hand, M. and Wright, A. (2006), "Lidar for turbine control", Report No. NREL/TP-500-39154, National Renewable Energy Laboratory, Colorado, USA. https://doi.org/10.2172/881478.
  22. Holm, S., Josefson, B.L., DeMar, J. and Svensson, T. (1995), "Prediction of fatigue life based on level crossings and a state variable", Fatigue Fract. Eng. Mater. Struct., 18(10), 1089-1100. https://doi.org/10.1111/j.1460-2695.1995.tb00841.x.
  23. IEC 61400-1 (2005), Wind Turbines Part 1: Design requirements, International Electrotechnical Commission, UK. https://doi.org/10.3403/30095699.
  24. Jiang, Z., Hu, W., Dong, W., Gao, Z. and Ren, Z. (2017), "Structural reliability analysis of wind turbines: A review", Energies, 10(12), 1-25. https://doi.org/10.3390/en10122099.
  25. Jonkman, B.J. (2009), "TurbSim user's guide", Report No. NREL/TP500-46198, National Renewable Energy Laboratory, Golden, Colorado, USA. https://doi.org/10.2172/965520.
  26. Jonkman, J.M. and Buhl Jr, M.L. (2005), "Fast user's guide", Report No. NREL/TP-500-38230, National Renewable Energy Laboratory, Golden, Colorado, USA. https://doi.org/10.2172/15020796.
  27. Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5-MW reference wind turbine for offshoresystem development", Report No. NREL/TP-50038060, National Renewable Energy Laboratory, Golden, Colorado, USA. https://doi.org/10.2172/947422.
  28. Ku쳐k, M., Cetin, N.S. and Emeksiz, C. (2012), "Stress analysis of shape memory alloys used in wind turbine blade root connection", Energy Edu. Sci. Technol. Part A Energy Sci. Res., 30, 667-676.
  29. Lachenal, X., Daynes, S. and Weaver, P.M. (2013), "Review of morphing concepts and materials for wind turbine blade applications", Wind Energy, 16(2), 283-307. https://doi.org/10.1002/we.531.
  30. Lackner, M.A. (2013), "An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines", Wind Energy, 16(3), 435-444. https://doi.org/10.1002/we.1500.
  31. Liang, C. and Rogers, C.A. (1997), "One-dimensional thermomechanical constitutive relations for shape memory materials", J. Intell. Mater. Syst. Struct., 8(4), 285-302. https://doi.org/10.1177/1045389x9700800402.
  32. Liu, L., Bian, H., Du, Z., Xiao, C., Guo, Y. and Jin, W. (2019), "Reliability analysis of blade of the offshore wind turbine supported by the floating foundation", Compos. Struct., 211, 287-300. https://doi.org/10.1016/j.compstruct.2018.12.036.
  33. Lutes, L.D. and Sarkani, S. (2004), Random Vibrations: Analysis of Structural and Mechanical Systems, Elsevier, Burlington, USA. https://doi.org/10.1016/B978-0-7506-7765-3.X5000-2.
  34. Ma, Z., Liu, Y., Wang, D., Teng, W. and Kusiak, A. (2017), "Cyclostationary analysis of a faulty bearing in the wind turbine", J. Solar Energy Eng., 139(3), 031006. https://doi.org/10.1115/1.4035846.
  35. Ma, Y., Martinez-Vazquez, P. and Baniotopoulos, C. (2019), "Wind turbine tower collapse cases: A historical overview", Proceedings of the Institution of Civil Engineers-Structures and Building, London, UK, August. https://doi.org/10.1680/jstbu.17.00167.
  36. Maheswari, R.U. and Umamaheswari, R. (2017), "Trends in nonstationary signal processing techniques applied to vibration analysis of wind turbine drive train - a contemporary survey", Mech. Syst. Signal Process., 85(2017), 296-311. https://doi.org/10.1016/j.ymssp.2016.07.046.
  37. McCormick, A.C. and Nandi, A.K. (1998), "Cyclostationarity in rotating machine vibrations", Mech. Syst. Signal Process., 12(2), 225-242. https://doi.org/10.1006/mssp.1997.0148.
  38. Nelson, R., Corke, T., Othman, H., Patel, M., Vasudevan, S. and Ng, T. (2008), "A smart wind turbine blade using distributed plasma actuators for improved performance", Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Nevada, USA, January. https://doi.org/10.2514/6.2008-1312.
  39. Rao, A., Srinivasa, A.R. and Reddy, J.N. (2015), Design of Shape Memory Alloy (SMA) Actuators, Springer, Texas, USA. https://doi.org/10.1007/978-3-319-03188-0.
  40. Rehman, S., Alam, M., Alhems, L.M. and Rafique, M.M. (2018), "Horizontal axis wind turbine blade design methodologies for efficiency enhancement - a review", Energies, 11(3), 1-34. https://doi.org/10.3390/en11030506.
  41. Sarkar, S. and Chakraborty, A. (2017), "Optimal design of semiactive MRTLCD for along-wind vibration control of horizontal axis wind turbine tower", Struct. Control Health Monit., 25(2), 1-18. https://doi.org/10.1002/stc.2083.
  42. Sarkar, S., Chen, L., Fitzgerald, B., and Basu, B. (2020), "Multi-resolution wavelet pitch controller for spar-type floating offshore wind turbines including wave-current interactions", J. Sound Vib., 470, 115170. https://doi.org/10.1016/j.jsv.2020.115170.
  43. Shahin, A.R., Meckl, P.H. and Jones, J.D. (1997), "Modeling of SMA tendons for active control of structures", J. Intell. Mater. Syst. Struct., 8(1), 51-70. https://doi.org/10.1177/1045389x9700800106.
  44. Teng, W., Ding, X., Zhang, Y., Liu, Y., Ma, Z. and Kusiak, A. (2017), "Application of cyclic coherence function to bearing fault detection in a wind turbine generator under electromagnetic vibration", Mech. Syst. Signal Process., 87, 279-293. https://doi.org/10.1016/j.ymssp.2016.10.026.
  45. Thomas, F.O., Corke, T.C., Iqbal, M., Kozlov, A. and Schatzman, D. (2009), "Optimisation of dielectric barrier discharge plasma actuators for active aerodynamic flow control", AIAA J., 47(9), 2169-2178. https://doi.org/10.2514/1.41588.
  46. Van Dam, C.P., Berg, D.E. and Johnson, S.J. (2008), "Active load control techniques for wind turbines", Sandia Nat. Lab., 2008(4809), 1-132. https://doi.org/10.2172/943932.
  47. Wang, W., Caro, S., Bennis, F. and Mejia, O.R.S. (2014), "A simplified morphing blade for horizontal axis wind turbines", J. Solar Energy Eng., 136(1), 011018. https://doi.org/10.1115/1.4025970.
  48. Wilson, D.G., Berg, D.E., Zayas, J.R. and Lobitz, D.W. (2008), "Optimised active aerodynamic blade control for load alleviation on large wind turbines", Sandia Nat. Lab., 2008(4202), 1-7.

Cited by

  1. Long-term fatigue reliability enhancement of horizontal axis wind turbine blade vol.33, pp.2, 2020, https://doi.org/10.12989/was.2021.33.2.169