DOI QR코드

DOI QR Code

Efficient Semi-systolic AB2 Multiplier over Finite Fields

  • Kim, Keewon (Dept. of Applied Computer Engineering, Dankook University)
  • Received : 2019.12.24
  • Accepted : 2020.01.14
  • Published : 2020.01.31

Abstract

In this paper, we propose an efficient AB2 multiplication algorithm using SPB(shifted polynomial basis) over finite fields. Using the feature of the SPB, we split the equation for AB2 multiplication into two parts. The two partitioned equations are executable at the same time, and we derive an algorithm that processes them in parallel. Then we propose an efficient semi-systolic AB2 multiplier based on the proposed algorithm. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the proposed AB2 multiplier saves about 94%, 87%, 86% and 83% of the AT complexity of the multipliers of Wei, Wang-Guo, Kim-Lee, Choi-Lee, respectively. Therefore, the proposed multiplier is suitable for VLSI implementation and can be easily adopted as the basic building block for various applications.

본 논문에서는 유한체상의 SPB(shifted polynomial basis)를 사용한 효율적인 AB2 곱셈 알고리즘을 제안한다. SPB의 특징을 이용하여, AB2 곱셈을 위한 수식을 두 부분으로 분할하였다. 분할된 두 수식은 동시에 실행가능하며, 이를 병렬로 처리하는 알고리즘을 도출하였다. 그리고 제안한 알고리즘을 기반으로 효율적인 세미-시스톨릭(semi-systolic) AB2 곱셈기를 제안한다. 제안한 곱셈기는 기존의 곱셈기에 비해 낮은 공간-시간 복잡도(area-time complexity)를 가진다. 기존의 구조들과 비교하면, 제안한 AB2 곱셈기는 공간-시간 복잡도면에서 Wei, Wang-Guo, Kim-Lee, 및 Choi-Lee의 곱셈기들의 약 94%, 87%, 86%, 및 83% 가량이 감소되었다. 따라서 제안한 곱셈기는 VLSI(very large scale integration) 구현에 적합하며 다양한 응용의 기초적인 구성 요소로 쉽게 적용할 수 있다.

Keywords

References

  1. A. J. Menezes, P.C. van Oorschot, S.A. Vanstone, "Handbook of Applied Cryptography" Boca Raton, FL, CRC Press, 1996.
  2. R. Lidl, H. Niederreiter, "Introduction to Finite Fields and Their Applications" New York, Cambridge University Press, 1994.
  3. C. L. Wang, J. L. Lin, "Systolic Array Implementation of Multipliers for Finite Fields," IEEE Trans. Circuits Syst., Vol. 38, No. 7, pp.796-800, Jul. 1991. DOI: 10.1109/31.135751
  4. C. S. Yeh, I. S. Reed, T. K. Troung, “Systolic Multipliers for Finite Fields,” IEEE Trans. Comput., Vol. C-33, No. 4, pp. 357-360, Apr. 1984. DOI: 10.1109/TC.1984.1676441
  5. C. Y. Lee, J. S. Horng, I. C. Jou, "Low-complexity Bit-parallel Systolic Montgomery Multipliers for Special Classes of GF($2^m$)," IEEE Transactions on Computers, Vol. 54, No. 9, pp. 1061-1070, July 2005. DOI: 10.1109/TC.2005.147
  6. C. W. Chiou, C. Y. Lee, A. W. Deng, J. M. Lin, "Concurrent Error Detection in Montgomery Multiplication over GF($2^n$)," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-A, No. 2, pp. 566-574, Feb. 2006. DOI: 10.1093/ietfec/e89-a.2.566
  7. W. T. Huang, C. H. Chang, C. W. Chiou, F. H. Chou, "Concurrent Error Detection and Correction in a Polynomial Basis Multiplier over GF($2^n$)," IET Inf. Secur., Vol. 4, No. 3, pp. 111-124, Sep. 2010. DOI: 10.1049/iet-ifs.2009.0160
  8. K. W. Kim, S. H. Kim, "A Low Latency Semi-systolic Multiplier over GF($2^n$)," IEICE Electron. Express, Vol. 10, No. 13, pp. 20130354, Jul. 2013. DOI: 10.1587/elex.10.20130354
  9. S. H. Choi, K. J. Lee, "Low Complexity Semi-systolic Multiplication Architecture over GF($2^n$)," IEICE Electron. Express, Vol. 11, No. 20, pp. 20140713, Oct. 2014. DOI: 10.1587/elex.11.20140713
  10. K. W. Kim, J. C. Jeon, "A Semi-systolic Montgomery Multiplier over GF($2^n$)," IEICE Electonics Express, Vol. 12, No. 21, pp. 20150769, Nov. 2015. DOI: 10.1587/elex.12.20150769
  11. K. W. Kim, S. C. Han, "Low Latency Systolic Multiplier over GF($2^n$) Using Irreducible AOP," IEMEK J. Embed. Sys. Appl., Vol. 11, No. 4, pp. 227-233, Aug. 2016. DOI: 10.14372/IEMEK.2016.11.4.227
  12. S. H. Choi, K. J. Lee, "Reduced Complexity Polynomial Multiplier Architecture for Finite Fields GF($2^n$)," IEICE Electron. Express, Vol. 14, No. 17, pp. 20160797, 2017. DOI: 10.1587/elex.14.20160797
  13. K. W. Kim, "Low-latency Semi-systolic Architecture for Multiplication over Finite Fields," IEICE Electron. Express, Vol. 16, No. 10, pp. 20190080, 2019. DOI: 10.1587/elex.16.20190080
  14. K. W. Kim, J. D. Lee, "Efficient Unified Semi-systolic Arrays for Multiplication and Squaring over GF($2^n$)," IEICE Electron. Express, Vol. 14, No. 12, pp. 20170458, 2017. DOI: 10.1587/elex.14.20170458
  15. K. W. Kim, S. H. Kim, "Efficient Bit-parallel Systolic Architecture for Multiplication and Squaring over GF($2^n$)," IEICE Electron. Express, Vol. 15, No. 2, pp. 20171195, 2018. DOI: 10.1587/elex.14.20171195
  16. A. Ibrahim, U. Tariq, T. Ahmad, A. Elmogy, Y. Bouteraa, F. Gebali, "Efficient Parallel Semi-systolic Array Structure for Multiplication and Squaring in GF($2^n$)," IEICE Electron. Express, Vol. 16, No. 12, pp. 20190268, 2019. DOI: 10.1587/elex.16.20190268
  17. S. W. Wei, "A Systolic Power-sum Circuit for GF($2^n$)," IEEE Transactions on Computers, Vol. 43, No. 2, pp. 226-229, Feb. 1994. DOI: 10.1109/12.262128
  18. C. L. Wang, J. H. Guo, "New Systolic Arrays for C+AB2, Inversion, and Division in GF($2^n$)," IEEE Transactions on Computers, Vol. 49, No. 10, pp. 1120-1125, Oct. 2000. DOI: 10.1109/12.888047
  19. K. W. Kim, W. J. Lee, "Low-complexity Parallel and Serial Systolic Architectures for AB2 Multiplication in GF($2^n$)," IETE Technical Review, Vol. 30, No. 2, pp. 134-141, 2013. DOI: 10.4103/0256-4602.110552
  20. S. H. Choi, K. J. Lee, "Parallel in/out Systolic AB2 Architecture with Low Complexity in GF($2^n$)," Electron. Lett., Vol. 52, No. 13, pp. 1138-1140, 2016. DOI: 10.1049/el.2015.3681
  21. T. W. Kim, K. W. Kim, "Low-latency Montgomery AB2 Multiplier Using Redundant Representation over GF($2^n$)," IEMEK Journal of Embedded Systems and Applications, Vol. 12, No. 1, pp. 11-18, Feb. 2017. DOI: 10.14372/IEMEK.2017.12.1.11
  22. H. Fan, Y. Dai, "Fast Bit-parallel GF($2^n$) Multiplier for All Trinomials," IEEE Trans. Comput., Vol. 54, No. 4, pp. 485-490, 2005. DOI: 10.1109/TC.2005.64
  23. H. Fan, M. Hasan, "Fast Bit Parallel Shifted Polynomial Basis Multipliers in GF($2^n$)," IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., Vol. 53, No. 12, pp. 2606-2615, 2006. DOI: 10.1109/TCSI.2006.883855