초록
그래프 이론에서 최소비용 경로는 시작 노드와 도착 노드 사이의 최단 경로를 탐색하여 구한다. 최소비용은 두 노드 사이의 거리나 가격의 차이를 1차원 값으로 계산하며 연결된 노드 사이의 최소비용의 합을 구성하는 노드와 간선이 최단 경로다. 그러나 각 노드가 다중속성을 갖는 경우에는 경로에서 나타날 수 있는 비용의 종류 또한 속성의 개수만큼이므로 최단 경로를 판단하기에는 어려움이 있다. 본 논문에서는 사용자의 다양한 요구사항을 만족할 수 있도록 유클리드 거리를 사용하여 다중속성을 반영한 최단 경로 탐색 기법을 제안한다. 실험에서는 1차원 값에 대한 최단 경로와 2차원 속성에 대한 유클리드 거리를 이용한 최단 경로가 다르게 탐색 되었다. 다중 속성에서도 단일 속성과 차별화된 사용자의 선호 속성이 반영된 것으로 나타났다. 결과적으로 다중속성이 반영됨으로써 사용자의 다양한 요구사항을 만족시킬 수 있게 되었다.
In graph theory, the least-cost path is discovered by searching the shortest path between a start node and destination node. The least cost is calculated as a one-dimensional value that represents the difference in distance or price between two nodes, and the nodes and edges that comprise the lowest sum of costs between the linked nodes is the shortest path. However, it is difficult to determine the shortest path if each node has multiple attributes because the number of cost types that can appear is equal to the number of attributes. In this paper, a shortest path search scheme is proposed that considers multiple attributes using the Euclidean distance to satisfy various user requirements. In simulation, we discovered that the shortest path calculated using one-dimensional values differs from that calculated using the Euclidean distance for two-dimensional attributes. The user's preferences are reflected in multi attributes and it was different from one-dimensional attribute. Consequently, user requirements could be satisfied simultaneously by considering multiple attributes.