초록
본 연구의 목적은 요양병원에서 발생할 수 있는 노인안전사고 발생률을 감소시키는 것이다. 즉, 위험지역으로 접근하는 인물이 노인(환자복) 그룹인지 실무자(평상복) 그룹인지를 CCTV에 나타나는 의복을 기준으로 구별하는 것이다. Web Crawling기법과 요양병원으로부터 지원을 받아 기초 데이터를 수집하였다. 이후 Image Generator와 Labeling으로 모델 학습 데이터를 만들었다. CCTV의 제한된 성능 때문에 높은 정확도와 속도를 모두 갖춘 모델을 만드는 것은 어려웠다. 그러므로 정확성이 상대적으로 우수한 ResNet 모델, 속도에서 상대적으로 우수한 YOLO3 모델을 각각 구현했다. 그리고 요양병원이 자신의 실정에 맞는 모델을 고를 수 있게 하고자 했다. 연구 결과 환자복과 평상복을 적절한 정확도로 구별할 수 있는 모델을 구현하였다. 따라서 실제 사용처에서 노인들이 위험구역에 접근하지 못하도록 하여 요양병원 안전사고 감소에 이바지 할 것으로 평가된다.
The purpose of this paper is to reduce the ratio of the patient accidents that may occur in nursing hospitals. In other words, it determines whether the person approaching the dangerous area is a elderly (patient uniform) group or a practitioner(Casual Clothing) group, based on the clothing displayed by CCTV. We collected the basic learning data from web crawling techniques and nursing hospitals. Then model training data was created with Image Generator and Labeling program. Due to the limited performance of CCTV, it is difficult to create a good model with both high accuracy and speed. Therefore, we implemented the ResNet model with relatively excellent accuracy and the YOLO3 model with relatively excellent speed. Then we wanted to allow nursing hospitals to choose a model that they wanted. As a result of the study, we implemented a model that can distinguish patient and casual clothes with appropriate accuracy. Therefore, it is believed that it will contribute to the reduction of safety accidents in nursing hospitals by preventing the elderly from accessing the danger zone.