DOI QR코드

DOI QR Code

A Study on Stock Trend Determination in Stock Trend Prediction

  • Lim, Chungsoo (Dept. of Electronic Eng., Korea National University of Transportation)
  • Received : 2020.08.31
  • Accepted : 2020.11.19
  • Published : 2020.12.31

Abstract

In this study, we analyze how stock trend determination affects trend prediction accuracy. In stock markets, successful investment requires accurate stock price trend prediction. Therefore, a volume of research has been conducted to improve the trend prediction accuracy. For example, information extracted from SNS (social networking service) and news articles by text mining algorithms is used to enhance the prediction accuracy. Moreover, various machine learning algorithms have been utilized. However, stock trend determination has not been properly analyzed, and conventionally used methods have been employed repeatedly. For this reason, we formulate the trend determination as a moving average-based procedure and analyze its impact on stock trend prediction accuracy. The analysis reveals that trend determination makes prediction accuracy vary as much as 47% and that prediction accuracy is proportional to and inversely proportional to reference window size and target window size, respectively.

본 연구에서는 주가 결정 방법이 주가 경향 예측에 미치는 영향을 확인하기 위한 분석을 수행한다. 주식시장에서 성공적인 투자를 위해서는 주가의 상승과 하락을 정확하게 예측하는 것이 큰 도움이 되므로 주가 경향 예측에 관해 많은 연구가 진행되고 있다. 예를 들어 근래에는 SNS나 뉴스의 내용을 텍스트 마이닝을 이용하여 분석하고, 이를 이용한 주가 등락의 예측 방법이 제안되었으며 다양한 기계학습 기법들이 활용되고 있다. 그러나 주가의 경향을 '상승' 또는 '하락'으로 결정하는 방법은 제대로 분석된 적 없으며 일반적으로 쓰던 방법을 답습하고 있다. 이에 본 논문에서는 주가 경향 결정 방법을 이동평균을 이용해 일반화하고 주가 경향 결정 방법이 예측 정확도에 미치는 영향을 분석한다. 분석 결과, 다음 날의 주가 경향을 예측하는 경우, 주가 경향 결정방법에 따라 예측 정확도가 47%까지 차이가 남을 발견하였다. 또한 경향 결정에 사용되는 기준값 윈도우의 크기와 예측의 정확도는 비례 관계이며, 대상값 윈도우의 크기와 정확도는 반비례 관례임을 알 수 있었다.

Keywords

References

  1. H. S. Sim, H. I. Kim, and J. J. Ahn, "Is deep learning for image recognition applicable to stock market prediction?," Complexity, Vol.2019, pp. 1-10, Feb. 2019. DOI: 10.1155/2019/4324878
  2. X. Zhang, Y. Hu, K. Xie, S. Wang, E. Ngai, and M. Liu, "A causal feature selection algorithm for stock prediction modeling," Neurocomputing, Vol. 142, pp. 48-59, Oct. 2014. DOI: 10.1016/j.neucom.2014.01.057
  3. X. Zhang, Y. Zhang, S. Wang, Y. Yao, B. Fang, and P. Yu, "Improving stock market prediction via heterogeneous information fusion," Knowledge-Based Systems, Vol. 143, pp. 236-247, March 2018. DOI: 10.1016/j.knosys.2017.12.025
  4. A. Oztekin, R. Kizilaslan, S. Freund, and A. Iseri, "A data analytic approach to forecasting daily stock returns in an emerging market," European Journal of Operational Research, Vol. 253, pp. 697-710, Sept. 2016. DOI: 10.1016/j.ejor.2016.02.056
  5. D. Kumar, S. S. Meghwani, and M. Thakur, "Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets," Journal of Computational Science, Vol. 17, pp. 1-13, Nov. 2016. DOI: 10.1016/j.jocs.2016.07.006
  6. Z. Lei and W. Lin, "Price trend prediction of stock market using outlier data mining algorithm," Proceedings of IEEE International Conference on Big Data and Cloud Computing, pp. 93-98, 2015. DOI: 10.1109/bdcloud.2015.19
  7. J. Zhang, S. Cui, Y. Xu, Q. Li, and T. Li, "A novel data-driven stock price trend prediction system," Expert Systems with Applications, Vol. 97, pp. 60-69, May 2018. DOI: 10.1016/j.eswa.2017.12.026
  8. W. Chiang, D. ENke, T. Wu, and R. Wang, "An adaptive stock index trading decision support system," Expert Systems with Applications, Vol. 59, pp. 195-207, Oct. 2016. DOI: 10.1016/j.eswa.2016.04.025
  9. Y. Chen and Y. Hao, "Integrating principle component analysis and weighted support vector machine for stock trading signals prediction," Neurocomputing, Vol. 321, pp. 381-402, Dec. 2018. DOI: 10.1016/j.neucom.2018.08.077
  10. E. Hoseinzade and S. Haratizadeh, "CNNpred: CNN-based stock market prediction using a diverse set of variables," Expert Systems with Applications, Vol. 129, pp. 273-285, Sept. 2019. DOI: 10.1016/j.eswa.2019.03.029
  11. W. Long, Z. Lu, and L. Cui, "Deep learning-based feature engineering for stock price movement prediction," Knowledge-Based Systems, Vol. 164, pp. 163-173, Jan. 2019. DOI: 10.1016/j.knosys.2018.10.034
  12. R.Socher, B. Huval, B. Bhat, C. Manning, and A. Ng, "Convolutional-recursive deep learning for 3D object classification," Proceedings of International Conference on Neural Information Processing Systems, pp. 656-664, 2012.
  13. A. Graves, A. Mohamed, and G. Hinton, "Speech recognition with deep recurrent neural networks," Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645-6649, 2013. DOI: 10.1109/icassp.2013.6638947
  14. D. Chicco, P. Sadowski, and P. Baldi, "Deep autoencoder neural networks for gene ontology annotation predictions," Proceedings of ACM Conference on Bioinformatics, COmputational Biology, and Health Informatics, pp. 533-540, 2014. DOI: 10.1145/2649387.2649442
  15. A. Sun, M. Lachanski, and F. Fabozzi, "Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction," International Review of Financial Analysis, Vol. 48, pp. 272-281, Dec. 2016. DOI: 10.1016/j.irfa.2016.10.009
  16. H. Hu, L. Tang, S. Zhang, and H. Wang, "Predicting the direction of stock markets using optimized neural networks with Google Trends," Neurocomputing, Vol. 285, pp. 188-195, April 2018. DOI: 10.1016/j.neucom.2018.01.038
  17. G. Park and H. Shin, "Stock price forecasting using semi-supervised learning," Proceedings of KORMS Conference, pp. 110-116, Oct. 2010.
  18. S. Ahn and S. Cho, "Stock prediction using news text mining and time series analysis," Proceedings of KIISE Conference, pp. 364-369, June 2010.
  19. D. Shin and K. Jung, "Forecasting short-term KOSPI using wavelet transforms and fuzzy neural network," Journal of the Korea Contents Association, Vol. 11, No. 6, pp. 1-7, June 2011. DOI: 10.5392/JKCA.2011.11.6.001
  20. J. Jin and J. Min, "A real-time stock market prediction using knowledge accumulation," Journal of Intelligent Information Systems, Vol. 17, No. 4, pp. 109-130, Dec. 2011. DOI: 10.13088/jiis.2011.17.4.109
  21. J. Huh and J. Yang, "SVM based stock price forecasting using financial statements," KIISE Transactions on Computing Practices, Vol. 21, No. 3, pp. 167-172, March 2015. https://doi.org/10.5626/KTCP.2015.21.3.167
  22. Z. Hu, J. Zhu, and K. Tse, "Stocks market prediction using support vector machine," Proceedings of International Conference on Information Management, Innovation Management and Industrial Engineering, pp. 115-118, Nov. 2013. DOI: 10.1109/iciii.2013.6703096
  23. G. Dong, K. Fataliyev, and L. Wang, "One-step and multi-step ahead stock prediction using backpropagation neural networks," Proceedings of International Conference on Information, Communicatio, and Signal Processing, pp. 1-5, 2013. DOI: 10.1109/icics.2013.6782784
  24. F. Wang, Z. Zhao, X. Li, and H. Zhang, "Stock volatility prediction using multi-kernel learning based extreme learning machine," Proceedings of International Joint Conference on Neural Networks, pp. 3078-3085, 2014. DOI: 10.1109/ijcnn.2014.6889651
  25. Y. Xu, Z. Li, and L. Luo, "A study on feature selection for the trend prediction of stock trading price," Proceedings of International Conference on Computational and Information Sciences, pp. 579-582, 2013. DOI: 10.1109/iccis.2013.160
  26. K. Kim, "Financial time series forecasting using support vector machine," Neurocomputing, Vol. 55, pp. 307-319, Sept. 2003. DOI: 10.1016/s0925-2312(03)00372-2
  27. Y. Lin, H. Guo, and J. Hu, "An SVM-based approach for stock market trend prediction," Proceedings of International Joint Conference on Neural Networks, pp. 1-7, 2013. DOI: 10.1109/ijcnn.2013.6706743
  28. A. K. Sirohi, P. K. Mahato, and V. Attar, "Multiple kernel learning for stock price direction prediction," Proceedings of IEEE International Conference on Advances in Engineering & Technology Research, pp. 1-4, 2014. DOI: 10.1109/icaetr.2014.7012901
  29. D. Kato and T. Nagao, "Stock prediction using multiple time series of stock prices and news articles," Proceedings of IEEE Symposium on Computers & Informatics, pp. 11-16, 2012. DOI: 10.1109/isci.2012.6222659
  30. Y. Luo, J. Hu, X. Wei, D. Fang, and H. Shao, "Stock trends prediction based on hypergraph modeling clustering algorithm," Proceedings of IEEE International Conference on Progress in Informatics and Computing, pp. 27-31, 2014. DOI: 10.1109/pic.2014.6972289
  31. K. Kim and I. Han, "Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index," Expert Systems with Applications, Vol. 19, pp. 125-132, Aug. 2000. DOI: 10.1016/s0957-4174(00)00027-0
  32. J. Patel, S. Shah, P. Thakkar, and K. Kotecha, "Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques," Expert Systems with Applications, Vol. 42, pp. 259-268, Jan. 2015. DOI: 10.1016/j.eswa.2014.07.040
  33. C. Tsai and Y. Hsiao, "Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches," Decision Support Systems, Vol. 50, pp. 258-269, Dec. 2010. DOI: 10.1016/j.dss.2010.08.028
  34. M. Lee, "Using support vector machine with hybrid feature selection method to the stock trend prediction," Expert Systems with Applications, Vol. 36, pp. 10896-10904, Oct. 2009. DOI: 10.1016/j.eswa.2009.02.038
  35. L. Ni, Z. Ni, and Y. Gao, "Stock trend prediction based on fractal feature selection and support vector machine," Expert System with Applications, Vol. 38, pp. 5569-5576, May 2011. DOI: 10.1016/j.eswa.2010.10.079
  36. A. N. Kia, S. Haratizadeh, and S. B. Shouraki, "A hybrid supervised semi-supervised graph-based model to predict one-day ahead movement of global stock markets and commodity prices," Expert Systems with Applications, Vol. 105, pp. 159-173, Sept. 2018. DOI: 10.1016/j.eswa.2018.03.037

Cited by

  1. Forecasting Chemical Tanker Freight Rate with ANN vol.26, pp.4, 2020, https://doi.org/10.9708/jksci.2021.26.04.113