참고문헌
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature, Vol. 521, No. 7553, pp. 436-444, May, 2015. DOI: 10.1038/nature14539.
- G. Litjens, T. Kooi, B. E. Bejnordi, A. Setio, F. Ciompi, M. Ghafoorian, J. Van der Laak, B. Van Ginnekenn and C. I. Sanchez, "A Survey on Deep Learning in Medical Image Analysis," Medical Image Analysis, Vol. 42, pp. 60-88, December, 201. DOI: 10.1016/j.media.2017.07.005.
- M. N. Bajwa, M. I. Malik, S. A. Siddiqui, A. Dengel, F. Shafait, W. Neumeier, and S. Ahmed, "Two-stage Framework for Optic Disc Localization and Glaucoma Classification in Retinal Fundus Images using Deep Learning," BMC Medical Informatics and Decision Making, Vol. 19, Article No. 136, July, 2019. DOI: 10.1186/s12911-019-0842-8.
- P. Teare, M. Fishman, O. Benzaquen, E. Toledano, and E. Elnekave, "Malignancy Detection on Mammography Using Dual Deep Convolutional Neural Networks and Genetically Discovered False Color Input Enhancement," Jounal of Digital Imaging, Vol. 30, No. 4, pp. 499-505, August, 2017. DOI: 10.1007/s10278-017-9993-2.
- M. N. Bajwa, Y. Taniguchi, M. I. Malik, W. Neumeier, A. Dengel, S. Ahmed, Y. Zheng, B. M. Willams, and K. Chen, "Combining Fine-and Coarse-Grained Classifiers for Diabetic Retinopathy Detection," In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, CCIS, Vol. 1065, pp. 242-253, July 2019. DOI: 10.1007/978-3-030-39343-4_21
- M. Abedini, N. C. F. Codella, J. H. Connell, R. Garnavi, M. Merler, S. Pankanti, J. R. Smith, and T. Syeda-Mahmood, "A generalized framework for medical image classification and recognition," IBM Journal of Research and Development, Vol. 59, No. 2/3, pp. 1:1-1:18, March, 2015. DOI: 10.1147/JRD.2015.2390017.
- C.-C. Jay Kuo, "Understanding Convolutional Neural Networks with Mathematical Model," Journal of Visual Communication and Image Representation, Vol. 41, pp. 406-413, November, 2016. DOI: 10.1016/j.jvcir.2016.11.003.
- K. He, X. Zhang, S. Ren, and J. Sun., "Deep Residual Learning for Image Recognition," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 770-778, IEEE, June, 2016. DOI: 10.1109/CVPR.2016.90.
- J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks", in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018, IEEE, pp. 7132-7141, June, 2018. DOI: 10.1109/CVPR.2018.00745.
- A. Esteva, B. Kuprel, R. A. Novoa, S. M. Swetter, H. M. Blau, and S. Thrun, "Dermatologist-level Classification of Skin Cancer with Deep Neural Networks," Nature, Vol. 542, pp. 115-118, February, 2017. DOI: 10.1038/nature21056.
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv: 1409.1556.
- U. Dorj, K. Lee, J. Choi, and M. Lee, "The Skin Cancer Classification using Deep Convolutional Neural Network," Multimed Tools and Applications, Vol. 77, Issue 8, pp. 9909-9924, Springer, February, 2018. DOI: 10.1007/s11042-018-5714-1.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Communications of the ACM, Vol. 60, No. 6, ACM, May 2017. DOI: 10.1145/3065386.
- P. Tschandl, C. Rosendahl, B. N. Akay, et al., "Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks," JAMA Dermatol, Vol.155, No. 1, pp. 58-65, American Medical Association, Jan. 2019. DOI: 10.1001/jamadermatol.2018.4378.
- J. S. Alarifi, M. Goyal, A. K. Davison, D. Dancey, R. Chan, and M. H. Yap, "Facial Skin Classification using Convolutional Neural Networks", Proc. 14th Int. Conf. Image Anal. Recognit. (ICIAR 2017), LNCS, Vol. 10317, Springer, pp. 479-485, June, 2017. DOI: 10.1007/978-3-319-59876-5_53.
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, December, 2016, pp. 2818-2826, DOI: 10.1109/CVPR.2016.308.
- B. Ahmad, M. Usama, C. Huang, K. Hwang, M. S. Hossain and G. Muhammad, "Discriminative Feature Learning for Skin Disease Classification Using Deep Convolutional Neural Network," IEEE Access, Vol. 8, pp. 39025-39033, IEEE, February, 2020. DOI: 10.1109/ACCESS.2020.2975198.
- C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning", in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 4278-4284, AAAI Press, February, 2017.
- A. Pal, S. Ray, and U. Garain, "Skin Disease Identification from Dermoscopy Images using Deep Convolutional Neural Network," arXiv preprint arXiv:1807.09163, 2018.
- G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, IEEE, pp. 2261-2269, July, 2017. DOI: 10.1109/CVPR.2017.243.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018, IEEE, pp. 4510-4520, June, 2018. DOI: 10.1109/CVPR.2018.00474.