Acknowledgement
This research was supported by the National Research Foundation of Korea through a grant funded by the Korean government (NRF-2017K1A3A1A19071629).
References
- Chuang, S.L., 1967. Experimental on slamming of wedge-shaped bodies. J. Ship Res. 11 (3), 190-198. https://doi.org/10.5957/jsr.1967.11.3.190
- Cusano, G., Sebastiani, L., Bacicchi, G., 2007. Assessment of whipping effects induced by stern/bow-flare slamming. In: 10th International Symposium on Practical Design of Ships and Other Floating Structures. Houston, TX., PRADS2007-20189.
- Dessi, D., de Luca, M., Mariani, R., Carapellotti, D., 2007. Analysis of the ship response to stern slamming loads. In: 10th International Symposium on Practical Design of Ships and Other Floating Structures. Houston, TX., PRADS2007-20152.
- Engle, A., Lewis, R., 2003. A comparison of hydrodynamic impacts prediction methods with two dimensional drop test data. Mar. Struct. 16 (2), 175-182. https://doi.org/10.1016/S0951-8339(02)00026-6
- Faltinsen, O.M., Chezhian, M., 2005. A generalized wagner method for threedimensional slamming. J. Ship Res. 49 (4), 279-287. https://doi.org/10.5957/jsr.2005.49.4.279
- Howison, S.D., Ockendon, J.R., Wilson, S.K., 1991. Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215-230. https://doi.org/10.1017/S0022112091001076
- Kapsenberg, G.K., 2011. Slamming of ships: where are we now? Phil. Trans. Roy. Soc. Lond. Math. Phys. Eng. Sci. 369 (1947), 2892-2919.
- Kawakami, M., Michimoto, J., Kobayashi, K., 1977. Prediction of long term whipping vibration stress due to slamming of large full ships in rough seas. Int. Shipbuild. Prog. 24, 83-110. https://doi.org/10.3233/ISP-1977-2427201
- Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B., Buchner, B., 2005. A volume-of-fluid based simulation method for wave impact problems. J. Comput. Phys. 206 (1), 363-393. https://doi.org/10.1016/j.jcp.2004.12.007
- Luo, H., Wang, H., Guedes Soares, G., 2012. Numerical and experimental study of hydrodynamic impact and elastic response of one free-drop wedge with stiffened panels. Ocean Eng. 40, 1-14. https://doi.org/10.1016/j.oceaneng.2011.11.004
- Maki, K.J., Lee, D., Troesch, A.W., Vlahopoulos, N., 2011. Hydroelastic impact of a wedge-shaped body. Ocean Eng. 38 (4), 621-629. https://doi.org/10.1016/j.oceaneng.2010.12.011
- Michimoto, J., Imayoshi, N., 1982. On the stern flare impact pressure of RORO ship (in Japanese). J. Soc. Nav. Archit. Jpn. 151, 208-214. https://doi.org/10.2534/jjasnaoe1968.1982.208
- Oberhagemann, J., et al., 2010. Hydro-elastic simulation of stern slamming and whipping. Int. J. Ocean Clim. Syst. 1 (3-4), 179-188. https://doi.org/10.1260/1759-3131.1.3-4.179
- Ochi, M.K., Motter, L.E., 1973. Prediction of slamming characteristics and hull responses for ship design. Trans. - Soc. Nav. Archit. Mar. Eng. 81, 144-176.
- Panciroli, R., Shams, A., Porfiri, M., 2015. Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Eng. 94, 213-222. https://doi.org/10.1016/j.oceaneng.2014.12.004
- Stavovy, A.B., Chuang, S.L., 1976. Analytical determination of slamming pressures for high-speed vehicles in waves. J. Ship Res. 20 (4), 190-198. https://doi.org/10.5957/jsr.1976.20.4.190
- Storhaug, Gaute, 2014. The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels. Int. J. Naval Arch. Ocean Eng. 6 (4), 1096-1110. https://doi.org/10.2478/IJNAOE-2013-0233
- Sun, H., Faltinsen, O.M., 2009. Water entry of a bow-flare ship section with roll angle. J. Mar. Sci. Technol. 14 (1), 69-79. https://doi.org/10.1007/s00773-008-0026-1
- Tveitnes, T., Fairlie-Clarke, A.C., Varyani, K., 2008. An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Eng. 35 (14-15), 1463-1478. https://doi.org/10.1016/j.oceaneng.2008.06.012
- Von Karman, Th., 1929. The impact on seaplane floats during landing.
- Wagner, H., 1932. Uber StoB- und Gleitvergange an der Oberflache von FlUssig-keiten. Z. Angew. Math. Mech. 12 (4), 193-215. https://doi.org/10.1002/zamm.19320120402
- Yang, S.H., Lee, H.H., Park, T.H., Lee, L.H., Lee, Y.W., 2007. Experimental and numerical study on the water entry of symmetric wedges and a stern section of modern containership. In: 10th International Symposium on Practical Design of Ships and Other Floating Structures. Houston, Tx., PRADS2007-20107.
- Yettou, E.M., Desrochers, A., Champoux, Y., 2006. Experimental study on the water impact of a symmetrical wedge. Fluid Dynam. Res. 38 (1), 47-66. https://doi.org/10.1016/j.fluiddyn.2005.09.003
Cited by
- Multiphase flow simulation of water entry of a structure with complex geometry using a three-dimensional parallel compressible model vol.33, pp.12, 2021, https://doi.org/10.1063/5.0073435