DOI QR코드

DOI QR Code

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University) ;
  • Zhou, Zexing (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University) ;
  • Li, Hongwei (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University) ;
  • Zhou, Hao (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University) ;
  • Xu, Yang (National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University)
  • Received : 2018.08.26
  • Accepted : 2019.04.29
  • Published : 2020.12.31

Abstract

This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

Keywords

Acknowledgement

Grateful acknowledgment is given to National Natural Science Foundation of China (No. 61633009, 51579053, 51209050, 51779052, 51779059), and the Key Basic Research Project of "Shanghai Science and Technology Innovation Plan" (No.15JC1403300). This work was also partially supported by the Field Fund of the 13th Five-Year Plan for the Equipment PreFig. 16. Lateral force Y vs the sway velocity with varying 5.73 Wc =La. research Fund (No.61403120301).

References

  1. Bohm, C., Graf, K., 2014. Advancements in free surface ranse simulations for sailing yacht applications. Ocean Eng. 90, 11-20. http://www.sciencedirect.com/science/article/pii/S0029801814002510. https://doi.org/10.1016/j.oceaneng. 2014.06.038 (Innovation in High Performance Sailing Yachts - INNOVSAIL.).
  2. CD-adapco, S., 2015. Star-ccm+ User Guide Version 10.04.
  3. Feldman, J.P., 1979. Dtnsrdc revised standard submarine equations of motion. In: Poemes Et Legendes Kommentar. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.847.5301&rep=rep1&type=pdf.
  4. Fossen, T.I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control. https://doi.org/10.1002/9781119994138.
  5. Gerber, A.G., 2006. Ansys cfx-10 rans normal force predictions for the series 58 model 4621 unappended axisymmetric submarine hull in translation. http://cradpdf.drdc-rddc.gc.ca/PDFS/unc57/p527222.pdf.
  6. Gertler, M., Hagen, G.R., 1967. Standard Equations of Motion for Submarine simulation. https://trid.trb.org/view/159227.
  7. Guilmineau, E., Deng, G.B., Leroyer, A., Queutey, P., Visonneau, M., Wackers, J., 2018. Numerical simulations for the wake prediction of a marine propeller in straight-ahead ow and oblique ow. J. Fluids Eng. 140, 021111-021111-11. https://doi.org/10.1115/1.4039377.
  8. Hirt, C., Nichols, B., 1981. Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201-225. http://www.sciencedirect.com/science/article/pii/0021999181901455. https://doi.org/10.1016/0021-9991(81) 90145-5.
  9. Humphreys, D., 1981. Dynamics and hydrodynamics of ocean vehicles. Oceans 81, 88-91. https://doi.org/10.1109/OCEANS.1981.1151683.
  10. Kim, J., Kim, K., Choi, H.S., Seong, W., Lee, K.-Y., 2002. Estimation of hydrodynamic coefficients for an auv using nonlinear observers. IEEE J. Ocean. Eng. 27, 830-840. https://doi.org/10.1109/JOE.2002.805098.
  11. Kim, S.E., Rhee, B.J., Miller, R.W., 2013. Anatomy of turbulent ow around darpa suboff body in a turning maneuver using high-fidelity rans computations. Int. Shipbuild. Prog. 60, 207-231. https://doi.org/10.3233/ISP-130100. https://content.iospress.com/download/international-shipbuilding-progress/isp100?id=international-shipbuilding-progress%2Fisp100.
  12. Kim, H., Ranmuthugala, D., Leong, Z.Q., Chin, C., 2018. Six-dof simulations of an underwater vehicle undergoing straight line and steady turning manoeuvers. Ocean Eng. 150, 102-112. http://www.sciencedirect.com/science/article/pii/S0029801817307862. https://doi.org/10.1016/j.oceaneng.2017.12.048.
  13. Kumar, M., Subramanian, V.A., 2007. A numerical and experimental study on tank wall influences in drag estimation. Ocean Eng. 34, 192-205. https://doi.org/10.1016/j.oceaneng.2005.10.025.://WOS:000243037500017.
  14. Leong, Z.Q., Ranmuthugala, D., Penesis, I., Nguyen, H., 2015a. Quasi-static analysis of the hydrodynamic interaction effects on an autonomous underwater vehicle operating in proximity to a moving submarine. Ocean Eng. 106, 175-188. http://www.sciencedirect.com/science/article/pii/S0029801815002954. https://doi.org/10.1016/j.oceaneng.2015.06.052.
  15. Leong, Z.Q., Ranmuthugala, D., Penesis, I., Nguyen, H.D., 2015b. Rans-based cfd prediction of the hydrodynamic coefficients of darpa suboff geometry in straight-line and rotating arm manoeuvers. Int. J. Mar. Eng. 157, 41-51. https://doi.org/10.3940/rina.ijme.2015.a1.308.://WOS:000370998100004.
  16. Leong, Z.Q., Ranmuthugala, D., Penesis, I., Nguyen, H.D.A.1., Liu, H., Ma, N., Gu, X., 2017. Calculation of the hydrodynamic forces of ship model oblique towing test in circulating water channel by considering side wall effect correction. Shanghai Jiaotong Daxue Xuebao/J. Shanghai Jiaotong Univ. 51, 142-149. https://doi.org/10.16183/j.cnki.jsjtu.2017.02.003.
  17. Mansoorzadeh, S., Javanmard, E., 2014. An investigation of free surface effects on drag and lift coefficients of an autonomous underwater vehicle (auv) using computational and experimental fluid dynamics methods. J. Fluids Struct. 51, 161-171. http://www.sciencedirect.com/science/article/pii/S0889974614001856. https://doi.org/10.1016/j.jfluidstructs.2014.09.001.
  18. Maximiano, A., Vaz, G., Scharnke, J., 2017. Cfd Verification and Validation Study for a Captive Bullet Entry in Calm Water. V001T01A006. https://doi.org/10.1115/OMAE2017-61666.
  19. Nouri, N.M., Mostafapour, K., Hassanpour, S.H., 2016. Cfd modeling of wing and body of an auv for estimation of hydrodynamic coefficients. J. Appl. Fluid Mech. 9, 2717-2729. ://WOS:000386884200008. https://doi.org/10.29252/jafm.09.06.25365
  20. O'Brien, J., Young, T., Early, J., Griffin, P., 2018. An assessment of commercial cfd turbulence models for near wake hawt modelling. J. Wind Eng. Ind. Aerodyn. 176, 32-53. http://www.sciencedirect.com/science/article/pii/S016761051730716X. https://doi.org/10.1016/j.jweia.2018.03.001.
  21. Polis, C., Ranmuthugala, S., Du_y, J., Renilson, M., 2013. Enabling the Prediction of Manoeuvring Characteristics of a Submarine Operating Near the Free Surface, pp. 1-11. https://search.informit.com.au/documentSummary; dn=385675055708089;res=IELENG.
  22. Prestero, T., 2001a. Development of a six-degree of freedom simulation model for the remus autonomous underwater vehicle. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), vol. 1, pp. 450-455. https://doi.org/10.1109/OCEANS.2001.968766 vol. 1.
  23. Prestero, T., 2001b. Development of a six-degree of freedom simulation model for the remus autonomous underwater vehicle. In: MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), vol. 1, pp. 450-455 vol. 1.
  24. Renilson, M., 2015. Submarine Hydrodynamics. Springer International Publishing. https://doi.org/10.1007/978-3-319-79057-2.
  25. Shen, Z., Wan, D., Carrica, P.M., 2015. Dynamic overset grids in openfoam with application to kcs self-propulsion and maneuvering. Ocean Eng. 108, 287-306. http://www.sciencedirect.com/science/article/pii/S0029801815003480. https://doi.org/10.1016/j.oceaneng.2015.07.035.
  26. STERN, F., 1999. Verification and validation of cfd simulations. IIHR Report. https://ci.nii.ac.jp/naid/10009847536/en/.
  27. Triantafyllou, M.S., 2004. 13.49 Maneuvering and Control of Surface and Underwater Vehicles fall 2004. http://hdl.handle.net/1721.1/36835.
  28. White, F.M., 2005. Viscous Fluid Flows, vol. 20.
  29. Wu, L., Li, Y., Su, S., Yan, P., Qin, Y., 2014. Hydrodynamic analysis of auv underwater docking with a coneshaped dock under ocean currents. Ocean Eng. 85, 110-126. http://www.sciencedirect.com/science/article/pii/S0029801814001619. https://doi.org/10.1016/j.oceaneng.2014.04.022.
  30. Yang, R., Clement, B., Mansour, A., Li, M., Wu, N., 2015. Modeling of a complexshaped underwater vehicle for robust control scheme. J. Intell. Robot. Syst. 80, 491-506. https://doi.org/10.1007/s10846-015-0186-2.

Cited by

  1. Autonomous Underwater Vehicles and Field of View in Underwater Operations vol.9, pp.3, 2021, https://doi.org/10.3390/jmse9030277
  2. Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle vol.35, pp.2, 2021, https://doi.org/10.26748/ksoe.2020.067