DOI QR코드

DOI QR Code

Statistical Techniques to Derive Heavy Rain Impact Level Criteria Suitable for Use in Korea

통계적 기법을 활용한 한국형 호우영향도 기준 산정 연구

  • 이승운 ((재)국제도시물정보과학연구원 정보화연구실) ;
  • 김병식 (강원대학교 방재전문대학원) ;
  • 정승권 ((재)국제도시물정보과학연구원)
  • Received : 2020.05.15
  • Accepted : 2020.09.22
  • Published : 2020.12.01

Abstract

Presenting the impact of meteorological disasters departs from the traditional weather forecasting approach for meteorological phenomena. It is important to provide impact forecasts so that precautions against disruption and damage can be taken. Countries such as the United States, the U.K., and France already conduct impact forecasting for heavy rain, heavy snow, and cold weather. This study improves and applies forecasts of the impact of heavy rain among various weather phenomena in accordance with domestic conditions. A total of 33 impact factors for heavy rain were constructed per 1 km grids, and four impact levels (minimal, minor, significant, and severe) were calculated using standard normal distribution. Estimated criteria were used as indicators to estimate heavy rain risk impacts for 6 categories (residential, commercial, utility, community, agriculture, and transport) centered on people, facilities, and traffic.

기상현상 발생에 대한 기존 기상예보 방식에서 벗어나 기상재해가 사회와 인간생활에 끼치는 영향을 제공함으로써 사전에 영향범위에 대한 피해예방 및 행동예방을 취할 수 있는 영향예보를 제공하는 것이 필요하다. 이를 위해 미국, 영국, 프랑스 등 세계 각국에서는 호우, 폭설, 한파 등의 영향예보를 시행하고 있으며, 보다 효율적인 예보방안에 대해 고민하고 있다. 본 연구에서는 여러 기상현상 중 호우에 대한 영향예보를 국내의 실정에 맞도록 개선하고, 적용하기 위해 33개의 호우영향인자(Impact Library)를 격자단위(1 km)로 구축하고, 표준정규분포법을 이용하여 4개의 위험등급(Minimal, minor, significant, severe)의 기준을 산정하였다. 산정된 기준은 호우영향 대상체인 사람, 시설, 농업, 교통을 중심으로 한 6개의 카테고리(Residential, commercial, utility, community, agriculture, transport)에 대한 호우위험영향(Heavy rain risk impact)를 산정하기 위한 지표로 활용된다.

Keywords

References

  1. Box, G. E. P. and Cox, D. R. (1964). "An analysis of transformation." Journal of the Royal Statistical Society B, Vol. 26, No. 2, pp. 211-252.
  2. Jung, S. K. (2019). "A study on the development of a heavy rainfall risk impact evaluation matrix." Journal of Korea Water Resources Association, KWRA, Vol. 52, No. 2, pp. 125-132 (in Korean). https://doi.org/10.3741/JKWRA.2019.52.2.125
  3. Kim, H. M. (2017). "Paradigm shift to impact forecast for weather disaster response." Innovation Studies, Vol. 12, No. 3, pp. 161-178 (in Korean). https://doi.org/10.46251/innos.2017.08.12.3.161
  4. Moore, R. J., Cole, S. J., Dunn, S., Ghimire, S., Golding, B. W., Pierce, C. E., Roberts, N. M. and Speight, L. (2015). Surface water flood forecasting for urban communities, CREW report, Centre of expertise for waters in Scotland UK
  5. Park, C. Y. (2011). "Simulation comparison of standardization methods for interview scores." Journal of Korean Data & Information Science Society, Vol. 22, No, 2, pp. 189-196 (in Korean).
  6. Scottish Environment Protection Agency (SEPA) (2014). Your guide to using the flood guidance statement, Available at: https://www.sepa.org.uk/media/149570/sffs_fgs_user_guide_2015.pdf, p. 3, (Accessed: February 6, 2020).
  7. World Meteorological Organization (WMO) (2015). Multi-hazard impact-based forecast and warning services, WMO Guidelines, No.1150, pp.1-6.
  8. Yeh, S. W. (2017). "Suggestions for expanding impact forecasting services." Meteorological Technology & Policy, Vol. 10, No. 1, pp. 6-17 (in Korean).