DOI QR코드

DOI QR Code

Physical Properties of Water Dispersion Polyurethane Resin Based on Ammonium Poly Phosphate and HMDI

폴리인산 암모늄과 HMDI 기반으로 제조된 수분산 폴리우레탄 수지의 물리적 특성 연구

  • Lee, Joo-Youb (Department of fire and Disaster Prevention Engineering, Jungwon University)
  • 이주엽 (중원대학교 융합과학기술대학 소방방재공학전공)
  • Received : 2020.12.04
  • Accepted : 2020.12.17
  • Published : 2020.12.31

Abstract

In this study, the physical properties of water-dispersible polyurethane resins synthesized with polyammonium phosphate and HMDI were studied by coating film samples and full-grain surfaces. Solvent resistance was found to be unchanged in all samples, and in terms of tensile strength, DPU-AP3 (1.887 kgf/㎟) containing the most ammonium polyphosphate showed the lowest physical properties. The elongation rate was measured as 54 8% in the sample containing a large amount of ammonium polyphosphate. Abrasion resistance was measured as 548 mg.loss of a sample containing a lot of ammonium polyphosphate, and it was confirmed that the physical properties of the blended resin of ammonium polyphosphate and water-dispersible polyurethane were changed.

본 연구에서는 폴리인산암모늄 인산염과 HMDI로 합성된 수분산 폴리우레탄수지의 물리적 특성을 필름 시료와 피혁(Full-Grain) 표면에 코팅을 하여 물리적 특성 변화를 연구하였다. 내용제성은 모든 시료에서 변확 없음을 확인 할수 있었으며, 인장강도의 경우 폴리인산암모늄이 가장 많이 함유된 DPU-AP3(1.887 kgf/㎟)가 가장 낮은 물성을 보였다. 연실율은 폴리인산암모늄 많이 함유된 시료가 548%로 측정되었다. 내마모성은 폴리인산암모늄이 많이 함유된 시료가 548 mg.loss로 측정되어 폴리인산 암모늄과 수분산 폴리우레탄의 블랜딩된 수지의 물성변화가 확인되었다.

Keywords

References

  1. Y. Luo, D. Xie, Y. Chena, T. Han, R. Chen, X. Sheng, Y. iMei, "Synergistic effect of ammonium polyphosphate and α-zirconium phosphate in flame-retardant poly(vinyl alcohol) aerogels", Polymer Degradation and Stability, Vol.170, Article. 109019, (2019).
  2. J. Hu, J. Shan, D. Wen, X. Liu, J. Zhao, Z. Tong, Flame retardant, mechanical properties and curing kinetics of DOPO-based epoxy resins, Polymer Degradation and Stability, Vol.109, pp. 218, (2014). https://doi.org/10.1016/j.polymdegradstab.2014.07.026
  3. W. R White, D. T. Durocher, "Recycling of Rigid Polyurethane Articles and Reformulation into a Variety of Polyurethane Applications" J.cellular plastics, Vol.33, No.5, pp.477-86, (1997). https://doi.org/10.1177/0021955X9703300504
  4. D. Saihi, I. Vroman, S. Giraud, S. Bourbigot, "Microencapsulation of ammonium phosphate with a polyurethane shell. Part II", Interfacial polymerization technique, Reactive and Functional Polymers, Vol.66, No.10, pp. 1118, (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.02.001
  5. R. Sadeghi, H. B. Kahaki, "Thermodynamics of aqueous solutions of poly ethylene glycol di-methyl ethers in the presence or absence of ammonium phosphate salts", Fluid Phase Equilibria, Vol.306, No.2, pp.219, (2011). https://doi.org/10.1016/j.fluid.2011.04.012
  6. W. Han, H. Chen, X. Li, T. Zhang, "Thermodynamic modeling of magnesium ammonium phosphate cement and stability of its hydration products", Cement and Concrete Research, Vol.138, Article. 106223, (2020).
  7. V. Garcia-Pacios, V. Costa, M. Colera, JM. Martin-Martinez. "Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings". Prog Org Coat, Vol.71, pp.36-49, (2011). https://doi.org/10.1016/j.porgcoat.2010.12.007
  8. I.W. Cheong, H. C. Kong, J.S. Shin, J. H. Kim. "Kinetic aspects of chain extension reaction using water-soluble diamines in aqueous polyurethane dispersion". J Disper Sci, Technol, Vol.23, pp.1-8, (2002). https://doi.org/10.1080/01932690208984184
  9. Y. S. Kwak, S.W. Park, Y H. Lee, H. D. Kim. "Preparation and properties of waterborne polyurethanes for water-vapor-permeable coating materials". J Appl Polym Sci, Vol.89, pp.123-129, (2003). https://doi.org/10.1002/app.12128
  10. S. M. Cakic, I. S. Ristic, I. Krakovsky, D. T. Stojiljkovis, P. Belsky, L. Kollova. "Crystallizationand thermal properties in waterborne polyurethane elastomers: influence of mixed soft segment block". Mater Chem Phys, Vol.144, pp.31-40, (2014). https://doi.org/10.1016/j.matchemphys.2013.12.008
  11. U. Dorn, S. Enders, "Heat of mixing and liquideliquid-equilibrium of water + polypropylene glycol (PPG) with different molecular weights and water + propylene glycol dimethyl ether", Fluid Phase Equilibria, Vol.424, pp.58-67, (2016). https://doi.org/10.1016/j.fluid.2015.10.003
  12. A. Santamaria-Echart, I. Fernandes L. Ugarte, F. Barreiro, M. Corcuera, A. Eceiza, "Green nanocomposites from Salvia-based waterborne polyurethane-urea dispersions reinforced with nanocellulose", Progress in Organic Coatings, Vol.50, Article.105989, (2021).
  13. X. Cui, T. Hiraoka, T. Honda, Y. Hsu, T. Asoh, H. Uyama, "Oligoether grafting on cellulose microfibers for dispersion in poly(propylene glycol) and fabrication of reinforced polyurethane composite", Composites Science and Technology, Online.30, Article.108595, (2020).
  14. H. Liang, S. Wang, C. Zhang, "Aqueous anionic polyurethane dispersions from castor oil", Industrial Crops and Products, Vol.122, pp.182-189, (2018). https://doi.org/10.1016/j.indcrop.2018.05.079
  15. M. Fuensanta, J. Jofre-RecheJose, M. Martin-Martinez, "Structure and adhesion properties before and after hydrolytic ageing of polyurethane urea adhesives made with mixtures of waterborne polyurethane dispersions", International Journal of Adhesion and Adhesives, Vol.85, pp.165-176, (2018). https://doi.org/10.1016/j.ijadhadh.2018.06.002
  16. L. Guo, S. Huang, J. Qu, "Synthesis and properties of high-functionality hydroxyl-terminated polyurethane dispersions", Progress in Organic Coatings, Vol.119, pp.214-220, (2018). https://doi.org/10.1016/j.porgcoat.2018.02.033