DOI QR코드

DOI QR Code

몬테카를로 적분을 통한 3차원 점군의 건물 식별기법 연구

A Study on Building Identification from the Three-dimensional Point Cloud by using Monte Carlo Integration Method

  • YI, Chaeyeon (Hankuk University of Foreign Studies, Research Center for Atmospheric Environment) ;
  • AN, Seung-Man (Korea Research Institute for Human Settlements)
  • 투고 : 2020.10.12
  • 심사 : 2020.10.28
  • 발행 : 2020.12.31

초록

실제 공간의 분포 또는 양적 속성을 대변하는 지리정보 입력은 지구시스템 모의 내에서 주요 관심사가 되고 있다. 많은 연구에서 다양한 격자 해상도에서의 지표면 특성에 대한 부정확한 추정이 모델링 결과를 크게 바꾸는 것으로 나타났다. 따라서, 이 논문은 도시지역 건물들의 분포와 면적·체적 속성을 반영하기 위해서, 항공라이다로 수집된 3DPC(three-dimensional point cloud) 샘플링 체계에 Monte Carlo Integration(MCI) 기법 기반 공간확률(spatial probability)을 적용을 제안하였다. 건물 식별과 관련해 공간확률(SP) 임계치, 격자 크기, 3차원점군 밀도 세 인자의 결정규칙 적용 결과가 비교되었다. 연구 결과, 건물의 격자가 커짐에 따라 식별되는 건물의 면적 속성이 증가하였다. 공간 모델링 및 분석의 신뢰성을 높이기 위해서는 샘플링 체계에서의 결정규칙을 사용하여 건물의 면적 속성을 조정하는 것이 권장된다. 제안된 방법은 모델링 분야가 요구하는 크고 작은 격자의 변화에서도 일정하게 건물 면적 속성이 유지되도록 지원할 것이다.

Geospatial input setting to represent the reality of spatial distribution or quantitative property within model has become a major interest in earth system simulation. Many studies showed the variation of grid resolution could lead to drastic changes of spatial model results because of insufficient surface property estimations. Hence, in this paper, the authors proposed Monte Carlo Integration (MCI) to apply spatial probability (SP) in a spatial-sampling framework using a three-dimensional point cloud (3DPC) to keep the optimized spatial distribution and area/volume property of buildings in urban area. Three different decision rule based building identification results were compared : SP threshold, cell size, and 3DPC density. Results shows the identified building area property tend to increase according to the spatial sampling grid area enlargement. Hence, areal building property manipulation in the sampling frameworks by using decision rules is strongly recommended to increase reliability of geospatial modeling and analysis results. Proposed method will support the modeling needs to keep quantitative building properties in both finer and coarser grids.

키워드

과제정보

이 연구는 기상청 <자연재해대응 영향예보 생산기술개발>(KMI2018-01410)의 지원으로 수행되었습니다.

참고문헌

  1. Agam, G., Tang, X. 2005. A sampling framework for accurate curvature estimation in discrete surfaces. Visualization and Computer Graphics, IEEE Transactions on 11(5):573-583. https://doi.org/10.1109/TVCG.2005.69
  2. An, S.M., Kim, B.S., Lee, H.Y., Kim, C.H., Yi, C.Y., Eum, J.H., Woo, J.H. 2014. Threedimensional point cloud based sky view factor analysis in complex urban settings. Int. J. Climatol. 34:2685-2701. https://doi.org/10.1002/joc.3868
  3. An, S.M., Lee, H.Y., Kim, B., Yi, C.Y., Eum, J.H., Woo, J.H. 2014. Geospatial spreadsheets with microscale air quality visualization and synchronization for supporting multiple-scenario visual collaboration. International Journal of Geographical Information Science, (ahead-of-print), 1-22. doi: 10.1080/13658816.2014.938077.
  4. Atkinson, P. M., and Tate, N. J. 2000. Spatial scale problems and geostatistical solutions: a review. Professional Geographer 52, 607-623. https://doi.org/10.1111/0033-0124.00250
  5. Alterovitz, R., Simeon, T., Goldberg, K. Y. 2007. The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty. In Robotics: Science and Systems (pp.246-253).
  6. Carlberg M, Gao P, Chen G, Zakhor A. 2009. Classifying urban landscape in aerial lidar using 3d shape analysis. In 16th International Conference on Image Processing, IEEE; 1701-1704.
  7. Carneiro C, Morello E, Desthieux G. 2009. Assessment of Solar Irradiance on the Urban Fabric for the Production of Renewable Energy using LIDAR Data and Image Processing Techniques. In Advances in GIScience, Springer Berlin Heidelberg; 83-112.
  8. Charaniya AP, Manduchi R, Lodha SK. 2004. Supervised Parametric Classification of Aerial LiDAR Data, In Conference on Computer Vision and Pattern Recognition Workshop, IEEE; 30.
  9. Chen G, Zakhor A. 2009. 2D tree detection in large urban landscapes using aerial LiDAR data, In 16th International conference on Image Processing, IEEE; 1693-1696.
  10. Costanza, R. 1989. Model goodness of fit: a multiple resolution procedure. Ecological modelling 47(3):199-215. https://doi.org/10.1016/0304-3800(89)90001-X
  11. Davies, A. M., Kwong, S., Flather, R. A. 2000. On determining the role of wind wave turbulence and grid resolution upon computed storm driven currents. Continental Shelf Research 20(14):1825-1888. https://doi.org/10.1016/S0278-4343(00)00052-2
  12. Eum, J.H., Scherer, D., Fehrenbach, U., Woo, J.H. 2011. Development of an urban landcover classification scheme suitable for representing climatic conditions in a densely built-up Asian megacity. Landscape and Urban Planning, 103(3):362-371. https://doi.org/10.1016/j.landurbplan.2011.08.010
  13. Farzinmoghadam, M., Mostafavi, N., Infield, E. H., &Hoque, S. 2019. Developing an automated method for the application of lidar in iumat land-use model: Analysis of land-use changes using building-form parameterization, GIS, and artificial neural networks. Journal of Green Building, 14(1):1-30. https://doi.org/10.3992/1943-4618.14.1.1
  14. Fenner-Crisp, P., Barry, T., Bennett, D., Chang, S., Callahan, M., Burke, A., Knott, S. M. 1997. Guiding principles for Monte Carlo analysis. Risk Assessment Forum, US Environmental Protection Agency, 11-16.
  15. Florinsky, I., Kuryakova, G. 2000. Determination of grid size for digital terrain modelling in landscape investigations-exemplified by soil moisture distribution at a microscale. International Journal of Geographical Information Science 14(8):815-832. https://doi.org/10.1080/136588100750022804
  16. Goodchild, M. 2001. Metrics of scale in remote sensing and GIS. International Journal of Applied Earth Observation and Geoinformation 3(2):114-120. https://doi.org/10.1016/S0303-2434(01)85002-9
  17. Gousseau, P., Blocken, B., Stathopoulos, T., Van Heijst, G. J. F. 2011. CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal. Atmospheric Environment 45(2):428-438. https://doi.org/10.1016/j.atmosenv.2010.09.065
  18. Goodin, D. G., Henebry, G. M. 2002. The effect of rescaling on fine spatial resolution NDVI data: A test using multi-resolution aircraft sensor data. International Journal of Remote Sensing 23(18):3865-3871. https://doi.org/10.1080/01431160210122303
  19. Green, R. H. 1966. Measurement of non-randomness in spatial distributions. Researches on Population Ecology 8(1): 1-7. https://doi.org/10.1007/BF02524740
  20. Hefny, M. M., Ooka, R. 2009. CFD analysis of pollutant dispersion around buildings: effect of cell geometry. Building and Environment 44(8):1699-1706. https://doi.org/10.1016/j.buildenv.2008.11.010
  21. Hengl, T. 2006. Finding the right pixel size. Computers & Geosciences 32(9): 1283-1298. https://doi.org/10.1016/j.cageo.2005.11.008
  22. Hou, Q., Ai, C. 2020. A network-level sidewalk inventory method using mobile LiDAR and deep learning. Transportation research part C: emerging technologies, 119, 102772. https://doi.org/10.1016/j.trc.2020.102772
  23. Hu J, You S, Neumann U. 2003. Approaches to large-scale urban modeling, In Computer Graphics and Applications, IEEE; 62-69.
  24. Jochem, A., Hofle, B., Rutzinger, M., Pfeifer, N. 2009. Automatic roof plane detection and analysis in airborne lidar point clouds for solar potential assessment. Sensors 9(7):5241-5262. https://doi.org/10.3390/s90705241
  25. Jovanovic, Dusan, Stevan Milovanov, Igor Ruskovski, Miro Govedarica, Dubravka Sladic, Aleksandra Radulovic, and Vladimir Pajic. 2020. Building Virtual 3D City Model for Smart Cities Applications: A Case Study on Campus Area of the University of Novi Sad. ISPRS International Journal of Geo-Information 9, 8:476. https://doi.org/10.3390/ijgi9080476
  26. Kienzle, S. 2004. The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Transactions in GIS 8(1):83-112. https://doi.org/10.1111/j.1467-9671.2004.00169.x
  27. Kim, J.-J., Baik, J.-J. 2010. Effects of street-bottom and building-roof heating on flow in three-dimensional street canyons. Advances in Atmospheric Science 27(3): 513-527. doi:10.1007/s00376-009-9095-2.
  28. Kokalj Z, Zaksek K, Ostir K. 2011. Application of sky-view factor for the visualization of historic landscape features in lidar-derived relief models, Antiquity 85:263-273. https://doi.org/10.1017/S0003598X00067594
  29. Lalonde JF, Vandapel N, Huber FF, Hebert M. 2006. Natural Terrain Classification Using Three-Dimensional Ladar Data, Journal of Field Robotics 23:839-861. https://doi.org/10.1002/rob.20134
  30. Letzel, M. O., Krane, M., Raasch, S. 2008. High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmospheric Environment 42(38): 8770-8784. https://doi.org/10.1016/j.atmosenv.2008.08.001
  31. Lillesand, T., Kiefer, R. 2000. Remote Sensing and Image Interpretation, fourth ed. Wiley, New York, NY, 715p.
  32. Lindberg F, Grimmond CSB. 2011. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theoretical and applied climatology 105:311-323. https://doi.org/10.1007/s00704-010-0382-8
  33. McQueen, J., Draxler, R., Rolph, G. 1995. Influence of grid size and terrain resolution on wind field predictions from an operational mesoscale model. Journal of Applied Meteorology 34(10):2166-2181. https://doi.org/10.1175/1520-0450(1995)034<2166:IOGSAT>2.0.CO;2
  34. Noda, A., Niino, H. 2003. Critical grid size for simulating convective storms: a case study of the Del city supercell storm. Geophysical Research Letters 30(16):1-4.
  35. Phillips, J. D. 1988. The role of spatial scale in geomorphic systems. Geographical Analysis, 20(4):308-317. https://doi.org/10.1111/j.1538-4632.1988.tb00185.x
  36. Scherer, D., Fehrenbach, U., Beha, H. D., Parlow, E. 1999. Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmospheric Environment 33(24):4185-4193. https://doi.org/10.1016/S1352-2310(99)00161-2
  37. Shirowzhan, S., Lim, S., Trinder, J., Li, H., Sepasgozar, S. M. 2020b. Data mining for recognition of spatial distribution patterns of building heights using airborne lidar data. Advanced Engineering Informatics, 43:101033. https://doi.org/10.1016/j.aei.2020.101033
  38. Shirowzhan, S., Tan, W., Sepasgozar, S. M. 2020a. Digital Twin and CyberGIS for Improving Connectivity and Measuring the Impact of Infrastructure Construction Planning in Smart Cities. 240.
  39. Tan, B., Woodcock, C. E., Hu, J., Zhang, P., Ozdogan, M., Huang, D., Myneni, R. B. 2006. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sensing of Environment 105(2):98-114. https://doi.org/10.1016/j.rse.2006.06.008
  40. Tarnavsky, E., Garrigues, S., Brown, M. E. 2008. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment 112(2):535-549. https://doi.org/10.1016/j.rse.2007.05.008
  41. Torno, S., Torano, J., Menendez, M., Gent, M., Allende, C. 2011. Prediction of particulate air pollution from a landfill site using CFD and LIDAR techniques. Environmental fluid mechanics 11(1):99-112. https://doi.org/10.1007/s10652-010-9187-7
  42. Turner, M. G., O'Neill, R. V., Gardner, R. H., Milne, B. T. 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landscape ecology 3(3-4):153-162. https://doi.org/10.1007/BF00131534
  43. Unger J. 2009. Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. International Journal of Environment and Pollution 36:59-80. https://doi.org/10.1504/IJEP.2009.021817
  44. Vega C, Durrieu S. 2011. Multi-level filtering segmentation to measure individual tree parameters based on Lidar data: Application to a mountainous forest with heterogeneous stands, International Journal of Applied Earth Observation and Geoinformation 13:646-656. https://doi.org/10.1016/j.jag.2011.04.002
  45. Weisman, M. L., Skamarock, W. C., Klemp, J. B. 1997. The resolution dependence of explicitly modeled convective systems. Monthly Weather Review 125(4):527-548. https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2
  46. Xue, F., Lu, W., Chen, Z., Webster, C. J. 2020. From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt principles. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 418-431. https://doi.org/10.1016/j.isprsjprs.2020.07.020
  47. Zheng, J., Zhang, L., Che, W., Zheng, Z., Yin, S. 2009. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmospheric Environment 43(32):5112-5122. https://doi.org/10.1016/j.atmosenv.2009.04.060