참고문헌
- Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., and Savarese, S. (2016), 3D semantic parsing of large-scale indoor spaces, IEEE Conference on Computer Vision and Pattern Recognition, 27-30 June, Las Vegas, NV, USA, pp.1534-1543.
- Claridades, A.R., Lee, J., and Blanco, A. (2018), Using omnidirectional images for semi-automatically generating IndoorGML data, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 5, pp. 319-333. https://doi.org/10.7848/KSGPC.2018.36.5.319
- Jang, H., Yu. K., and Yang. J.H. (2020), Indoor reconstruction from floorplan images with a deep learning approach, ISPRS International Journal of Geo-Information, Vol. 9, No. 2, pp. 65:1-15. https://doi.org/10.3390/ijgi9110651
- Joo, C.H., Kim, J.S., and Li, K.J. (2012), Method for generating IndoorGML derived from CityGML, Proceedings of Korean Society for Geospatial Information Science, 12 October, Seoul, Korea, pp.38-41. (in Korean)
- Kang, H.K. and Li, K.J. (2017), A standard indoor spatial data model-OGC IndoorGML and implementation approaches, ISPRS International Journal of Geo-Information, Vol. 6, No. 4, pp. 116:1-25.
- Kazhdan, M., Bolitho, M., and Hoppe, H. (2006), Poisson surface reconstruction, The 4th Eurographics Symposium on Geometry Processing, 26-28 June, Cagliari, Italy, pp.61-70.
- Li, K.J. and Kim, D.M. (2018), Converting triangulated 3D indoor mesh data to OGC IndoorGML, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 6, pp. 499-505. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2018.36.6.499
- Mirvahabi, S.S. and Abbaspour, R.A. (2015), Automatic extraction of IndoorGML core model from OpenStreetMap, International Archive of the Photogrametry, Remote Sensing and Spatial Information Science, Vol.XL-1/W5, pp. 459-462.
- Mura, C., Mattausch, O., and Pajarola, R. (2016), Piecewise-planar reconstruction of multi-room interiors with arbitrary wall arrangements, Computer Graphics Forum, Vol. 35, No.7, pp. 179-188. https://doi.org/10.1111/cgf.13015
- Nan, L. and Wonka, P. (2017), PolyFit: polygonal surface reconstruction from point clouds, IEEE International Conference on Computer Vision, 22-29 October, Venice, Italy, pp.2372-2380.
- Ochmann, S., Vock, R., Wessel, R., and Klein, R. (2016), Automatic reconstruction of parametric building models from indoor point clouds, Computers & Graphics, Vol. 54, pp. 94-103. https://doi.org/10.1016/j.cag.2015.07.008
- Qi, C.R., Su, H., Mo, K., and Guibas, L.J. (2017), PointNet: deep learning on point sets for 3D classification and segmentation, IEEE Conference on Computer Vision and Pattern Recognition, 21-26 July, Honolulu, HI, USA, pp.77-85.
- Sanchez, V. and Zakhor, A. (2012), Planar 3D modeling of building interiors from point cloud data, IEEE International Conference on Image Processing, 30 September-3 October, Orlando, FL, USA, pp.1777-1780.
- Schops, T., Sattler, T., and Pollefeys, M. (2019), SurfelMeshing: online surfel-based mesh reconstruction, IEEE transactions on pattern analysis and machine intelligence, Vol. 42, No. 10, pp.2494-2507. https://doi.org/10.1109/tpami.2019.2947048
- Srivastava, S., Maheshwari, N., and Rajan, K.S. (2018), Towards generating semantically-rich IndoorGML data from architectural plans, International Archive of the Photogrametry, Remote Sensing and Spatial Information Science, Vol. XLII-4, pp. 591-595.
- Teo, T.A and Yu, S.C. (2017), The extraction of indoor building information from BIM to OGC IndoorGML, International Archive of the Photogrametry, Remote Sensing and Spatial Information Science, Vol.XLII-4/W2, pp. 167-170.
- Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., and Panozzo, D. (2019), Deep geometric prior for surface reconstruction, IEEE/CVF Conference on Computer Vision and Pattern Recognition, 15-20 June, Long Beach, CA, USA, pp.10122-10131.