DOI QR코드

DOI QR Code

산란점 수 추정방법에 따른 표적의 길이 추정

Target Length Estimation of Target by Scattering Center Number Estimation Methods

  • Lee, Jae-In (Interdisciplinary Major of Maritime AI Convergence, Korea Maritime and Ocean University (KMOU)) ;
  • Yoo, Jong-Won (Dept. of Electrical Engineering, KAIST) ;
  • Kim, Nammoon (Dept. of Land Radar, Hanwha Systems) ;
  • Jung, Kwangyong (Dept. of Land Radar, Hanwha Systems) ;
  • Seo, Dong-Wook (Dept. of Radio Communication Engineering and Interdisciplinary Major of Maritime AI Convergence, Korea Maritime and Ocean University (KMOU))
  • 투고 : 2020.10.16
  • 심사 : 2020.12.18
  • 발행 : 2020.12.31

초록

본 논문에서는 레이더를 이용한 표적 길이 추정 정확도를 향상시키기 위한 방법에 관해 소개한다. 레이더 수신신호를 통해 만들어지는 고해상도 거리측면도(HRRP: High Resolution Range Profile)은 표적의 1차원적인 산란 특성을 나타내며, HRRP에서의 피크(peak)는 전자기파를 강하게 산란시키는 산란점(scattering center)을 의미한다. 추출된 산란점을 이용하여 레이더 가시선 방향(RLOS: Radar Line of Sight)의 길이인 표적 종방향 거리(downrange) 길이를 추정하며, 표적과 레이더 가시선 방향이 이루는 각도를 통해 표적의 실제 길이를 추정한다. 길이 추정의 정확도를 향상시키기 위해, HRRP를 이용하는 방법보다 정확하게 산란점을 추출하기 위한 방법인 매개변수 추정방법(parametric estimation method)을 이용할 수 있다. 매개변수 추정방법은 산란점 개수가 결정된 후에 적용되며, 따라서 산란점 개수 추정의 정확도에 크게 영향을 받는다. 본 논문에서는 레이더를 통한 표적 길이 추정 정확도를 향상시키기 위해, 정보 이론적 판단 기준에 바탕을 둔 신호원 수 추정방법인 AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), GLE (Gerschgorin Likelihood Estimators)방법들을 이용하여 산란점 개수를 추정하였다. 매개변수 추정방법으로 ESPRIT기법을 이용하여, 간단한 표적 캐드 모델에 대한 길이 추정 시뮬레이션을 수행하였으며, GLE방법이 산란점 개수 추정과 표적 길이 추정에 우수한 성능을 보임을 확인하였다.

In this paper, we introduce a method to improve the accuracy of the length estimation of targets using a radar. The HRRP (High Resolution Range Profile) obtained from a received radar signal represents the one-dimensional scattering characteristics of a target, and peaks of the HRRP means the scattering centers that strongly scatter electromagnetic waves. By using the extracted scattering centers, the downrange length of the target, which is the length in the RLOS (Radar Line of Sight), can be estimated, and the real length of the target should be estimated considering the angle between the target and the RLOS. In order to improve the accuracy of the length estimation, parametric estimation methods, which extract scattering centers more exactly than the method using the HRRP, can be used. The parametric estimation method is applied after the number of scattering centers is determined, and is thus greatly affected by the accuracy of the number of scattering centers. In this paper, in order to improve the accuracy of target length estimation, the number of scattering centers is estimated by using AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), and GLE (Gerschgorin Likelihood Estimators), which are the source number estimation methods based on information theoretic criteria. Using the ESPRIT algorithm as a parameter estimation method, a length estimation simulation was performed for simple target CAD models, and the GLE method represented excellent performance in estimating the number of scattering centers and estimating the target length.

키워드

과제정보

이 논문은 2019년도 한화시스템(주)의 재원을 지원 받아 수행된 연구임.

참고문헌

  1. Akaike, H. (1974), A new look at the statistical model identification, IEEE Transactions on Automatic Control, Vol. 19, No. 6, pp. 716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Choi, G.G., Han, S.K., Jo, H.J., Kim, H.T., Kim, K.T., Song, S.C., and Na, Y.J. (2012), A study on signal processing of ballistic missile warhead discrimination using ESPRIT in millimeter-Wave(Ka-band) seeker, The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 23, No. 2, pp. 266-269. (in Korean with English abstract) https://doi.org/10.5515/KJKIEES.2012.23.2.266
  3. Hua, Y. and Sarkar, T.K. (1990), Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 5, pp. 814-824. https://doi.org/10.1109/29.56027
  4. Ji, B., Zhao, B., Wang, Y., Xu, R., and Yeo, T. S. (2020), Novel sparse apertures ISAR imaging algorithm via the TLS-ESPRIT technique, IET Radar, Sonar & Navigation, Vol. 14, No. 6, pp. 852-859. https://doi.org/10.1049/iet-rsn.2019.0564
  5. Jiao, Y., Huang, J., He, C., and Wang, J. (2011), Source number estimator using the peak-to-average power ratio modified by Gerschgorin radii, 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), IEEE, 14-16 September, Xi'an, China, pp. 1-5.
  6. Jo, H.J., Choi, G.G., Han, S.K., Kim, K.T., and Song, S.C. (2013), A study on signal processing of the length estimation of missile target using RELAX, The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol. 24, No. 3, pp. 292-298. (in Korean with English abstract) https://doi.org/10.5515/KJKIEES.2013.24.3.292
  7. Kim, H. and Myung, N. H. (2018), ISAR imaging method of radar target with short-term observation based on ESPRIT, Journal of ElEctromagnEtic WavEs and applications, Vol. 32, No. 8, pp. 1040-1051. https://doi.org/10.1080/09205071.2018.1429323
  8. Konishi, S. and Kitagawa, G. (1996), Generalised information criteria in model selection, Biometrika, Vol. 83, No. 4, pp. 875-890. https://doi.org/10.1093/biomet/83.4.875
  9. Kritchman, S. and Nadler, B. (2009), Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory, IEEE Transactions on Signal Processing, Vol. 57, No. 10, pp 3930-3941. https://doi.org/10.1109/TSP.2009.2022897
  10. Laufer-Goldshtein, B., Talmon, R., and Gannot, S. (2018), Source counting and separation based on simplex analysis, IEEE Transactions on Signal Processing, Vol. 66, No. 24, pp. 6458-6473. https://doi.org/10.1109/TSP.2018.2876349
  11. Liu, Q., Liu, A., Wang, Y., and Li, H. (2019), A super-resolution sparse aperture ISAR sensors imaging algorithm via the MUSIC technique, IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 9, pp. 7119-7134. https://doi.org/10.1109/TGRS.2019.2911686
  12. Nadakuditi, R.R. and Edelman, A. (2008), Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples, IEEE Transactions on Signal Processing, Vol. 56, No. 7, pp. 2625-2638. https://doi.org/10.1109/TSP.2008.917356
  13. Odendaal, J.W., Barnard, E., and Pistorius, C.W.I. (1994), Two-dimensional superresolution radar imaging using the MUSIC algorithm, IEEE Transactions on Antennas and Propagation, Vol. 42, No. 10, pp. 1386-1391. https://doi.org/10.1109/8.320744
  14. Roy, R. and Kailath, T. (1989), ESPRIT-estimation of signal parameters via rotational invariance techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, pp. 984-995. https://doi.org/10.1109/29.32276
  15. Rissanen, J. (1978), Modeling by shortest data description, Automatica, Vol. 14, No. 5, pp. 465-471. https://doi.org/10.1016/0005-1098(78)90005-5
  16. Schmidt, R. (1986), Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation, Vol. 24, No. 3, pp. 276-280. https://doi.org/10.1109/TAP.1986.1143830
  17. Tan, V.Y. and Fevotte, C. (2012), Automatic relevance determination in nonnegative matrix factorization with the/spl beta/-divergence, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No.7, pp. 1592-1605. https://doi.org/10.1109/TPAMI.2012.240
  18. Wax, M. and Kailath, T. (1985), Detection of signals by information theoretic criteria, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 33, No. 2, pp. 387-392. https://doi.org/10.1109/TASSP.1985.1164557
  19. Wu, H.T. (1999), Source number estimators using Gerschgorin radii, Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030), IEEE, 15-17 September, Cheju Island, South Korea, pp. 1331-1334.
  20. Wu, H.T., Yang, J.F., and Chen, F.K. (1995), Source number estimators using transformed Gerschgorin radii, IEEE Transactions on Signal Processing, Vol. 43, No. 6, pp. 1325-1333. https://doi.org/10.1109/78.388844
  21. Xie, Y., Xie, K., and Xie, S. (2019), Source number estimation and effective channel order determination based on higher-order tensors, Circuits, Systems, and Signal Processing, Vol. 38, No. 11, pp. 5393-5408. https://doi.org/10.1007/s00034-019-01106-0
  22. Yang, Z., Xiang, Y., Xie, K., and Lai, Y. (2016), Adaptive method for nonsmooth nonnegative matrix factorization, IEEE transactions on neural networks and learning systems, Vol. 28, No. 4, pp. 948-960. https://doi.org/10.1109/TNNLS.2016.2517096
  23. Yang, Z., Zhang, Y., Xiang, Y., Yan, W., and Xie, S. (2018), Non-negative matrix factorization with dual constraints for image clustering, IEEE Transactions on Systems, Man, and Cybernetics: Systems.