DOI QR코드

DOI QR Code

Development of Code-PPP Based on Multi-GNSS Using Compact SSR of QZSS-CLAS

QZSS-CLAS의 Compact SSR을 이용한 다중 위성항법 기반의 Code-PPP 개발

  • Received : 2020.09.28
  • Accepted : 2020.11.10
  • Published : 2020.12.31

Abstract

QZSS (Quasi-Zenith Satellite System) provides the CLAS (Centimeter Level Augmentation Service) through the satellite's L6 band. CLAS provides correction messages called C-SSR (Compact - State Space Representation) for GPS (Global Positioning System), Galileo and QZSS. In this study, CLAS messages were received by using the AsteRx4 of Septentrio which is a GPS receiver capable of receiving L6 bands, and the messages were decoded to acquire C-SSR. In addition, Multi-GNSS (Global Navigation Satellite System) Code-PPP (Precise Point Positioning) was developed to compensate for GNSS errors by using C-SSR to pseudo-range measurements of GPS, Galileo and QZSS. And non-linear least squares estimation was used to estimate the three-dimensional position of the receiver and the receiver time errors of the GNSS constellations. To evaluate the accuracy of the algorithms developed, static positioning was performed on TSK2 (Tsukuba), one of the IGS (International GNSS Service) sites, and kinematic positioning was performed while driving around the Ina River in Kawanishi. As a result, for the static positioning, the mean RMSE (Root Mean Square Error) for all data sets was 0.35 m in the horizontal direction ad 0.57 m in the vertical direction. And for the kinematic positioning, the accuracy was approximately 0.82 m in horizontal direction and 3.56 m in vertical direction compared o the RTK-FIX values of VRS.

QZSS (Quasi-Zenith Satellite System)는 위성의 L6 밴드를 통해서 CLAS (Centimeter Level Augmentation Service)를 제공한다. CLAS는 현재 GPS (Global Positioing System), Galileo 그리고, QZSS 위성군에 대한 보정정보를 제공하며, 이러한 보정정보를 C-SSR (Compact - Space State Representation)라고 한다. 본 연구에서는 L6 밴드를 수신할 수 있는 GPS 수신기인 Septentrio의 AsteRx4를 이용하여 CLAS 메시지를 수신하고, 그 메시지를 디코딩하여 C-SSR을 획득하였다. 그리고, GPS, Galileo, QZSS의 코드의사거리 관측치에 Compact SSR을 적용하여 GNSS (Global Navigation Satellite System) 오차를 보정하고, 비선형 최소제곱법으로 수신기의 3차원 위치 및 위성군의 시계오차들을 추정하는 다중 위성항법 기반의 Code-PPP (Precise Point Positioning)를 개발하였다. 개발한 알고리즘의 정확도를 평가하기 위해서 IGS (International GNSS Service) 사이트 중 하나인 TSK2 (Tsukuba)를 대상으로 정지측위를 수행하고, 일본의 가와니시(Kawanishi)시의 이나강(Ina river) 주변을 주행하며 이동측위를 수행하였다. 그 결과, 정지측위의 경우 모든 데이터셋의 평균 RMSE (Root Mean Squared Error)는 수평방향으로 0.35 m, 수직방향으로 0.57 m의 정확도를 나타냈다. 그리고 이동측위의 경우 VRS의 RTK-FIX 값과 비교해 봤을 때 수평방향은 약 0.82 m, 수직방향은 약 3.56 m의 정확도를 나타냈다.

Keywords

Acknowledgement

이 논문은 2016년도 정부(교육부)의 재원으로 한국연구재단의 지원과 2020년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(NRF-2016R1D1A1B01009872, N0002428, 2020년 산업전문인력양성사업)

References

  1. Aleks, B. (2017), How Accurate is Your Drone Survey? Everything You Need to Know, Geo awesomeness, July 4, 2017.
  2. Caporali, A. and Nicolini, L. (2017), Comparison between broadcast and precise orbits: GPS, GLONASS, Galileo and BeiDou, EUREF Analysis Centres Workshop, Brussels, Belgium, 2017.
  3. Choy, S., Harima, K., Li, Y., Choudhury, M., Rizos, C., Wakabayashi, Y. and Kogure, S. (2015), GPS Precise Point Positioning with the Japanese Quasi-Zenith Satellite System LEX Augmentation Corrections, Journal of Navigation, Vol. 68, No. 4, pp. 769-783. doi:10.1017/S0373463314000915.
  4. GSA. (2019), Report on road user needs and requirements: outcome of the European GNSS' user consultation platform, GSA-MKD-RD-UREQ-250283 Issue/Revision: 2.0, January 7, 2019, pp. 10.
  5. Hao, M. and Noguchi, N. (2019), Navigation of a robot tractor using the centimeter level augmentation information via Quasi-Zenith Satellite System, Engineering in Agriculture, Environment and Food, Elsevier, October 2019, Vol. 12, No. 4, pp. 414-149. https://doi.org/10.1016/j.eaef.2019.06.003
  6. Hirokawa, R., Sato, Y., Fujita, S., and Miya, M. (2016), Compact SSR Messages with Integrity Information for Satellite based PPP-RTK Service, Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), Portland, Oregon, September 2016, pp. 3372-3376. https://doi.org/10.33012/2016.14794.
  7. Japan Cabinet Office. (2020), Quasi-Zenith Satellite System Interface Specification Centimeter Level Augmentation Service(IS-QZSS-L6-003), August, 2020.
  8. Kim, M.S. and Park, K.D. (2017), Development and positioning accuracy assessment of single-frequency precise point positioning algorithms by combining GPS code-pseudorange measurements with real-time SSR corrections, Sensors (Basel), 2017 Jun; Vol. 17, No. 6 : 1347. Published online 2017 Jun 9. doi: 10.3390/s17061347.
  9. Kim, Y.G., Park, K.D., Kim, M.S., Yoo, C.S., Bae, J.S. and Kim, J.O. (2020), Analysis on GPS PDOP peaks in signal-blockage simulations, Journal of Positioning, Navigation, and Timing. 2020. Jun, Vol. 9, No. 2, pp. 79-88, DOI : http://dx.doi.org/10.11003/JPNT.2020.9.2.79 (In Korean with English abstract).
  10. Klobuchar, J.A. (1996), Ionospheric Effects of GPS, B. Parkinson and J. J. Spilker, Jr., eds., Global Positioning System: Theory And Applications, Volume 1, Chapter 12. American Institute of Aeronautics and Astronautics, Inc., Washington D.C., USA.
  11. Merry, K. and Bettinger, P. (2019), Smartphone GPS accuracy study in an urban environment, PLoS ONE, Vol. 14, No. 7 : e0219890, https://doi.org/10.1371/journal.pone.0219890, July 18, 2019.
  12. Miya, M., Fujita, S., Sato, Y., Ota, K., Hirokawa, R. and Takiguchi, J. (2016), "Centimeter Level Augmentation Service (CLAS), in Japanese quasi-zenith satellite system, its user interface, detailed design, and plan," Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), Portland, Oregon, September 2016, pp. 2864-2869, https://doi.org/10.33012/2016.14644.
  13. Misra, P. and Enge, P. (2011), Global Positioning System, Signals, Measurements, and Performance, Revised Second Edition, Ganga-Jamuna Press.
  14. Saastamoinen, J. (1973), Contribution to the theory of atmospheric refraction, Bulletin Geodesique, 107, pp.13-34, https://doi.org/10.1007/BF02522083
  15. Satirapod, C., Rizos, C., and Wang, J. (2001), GPS single point positioning with SA OFF: How accurate can we get?, Survey Review, July 19, 2013, Vol. 36, No. 282, pp. 255-262, https://doi.org/10.1179/sre.2001.36.282.255.
  16. Seepersad, G. and Bisnath, S. (2014), Challenges in assessing PPP performance, J. Appl. Geod. Vol. 8, No. 3, pp. 205-222. https://doi.org/10.1515/jag-2014-0008
  17. Tay, S. and Marais, J. (2013), Weighting models for GPS pseudorange observations for land transportation in urban canyons, 6th European Workshop on GNSS Signals and Signal Processing, December 2013, Munich, Germany.
  18. Wubbena, G., Bagge, A. and Schmitz, M. (2001), Network-based techniques for RTK applications, Proceedings the GPS JIN 2001 Symposium, GPS Society, Japan Institute of Navigation, Tokyo, Japan, pp. 53-65.
  19. Wubbena, G., Schmits, M. and Bagge, A. (2005), PPP-RTK: precise point positioning using state-space representation in RTK Network, Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute Of Navigation, ION GNSS 2005, Long Beach, California, pp. 2584-2594.
  20. Zumberge, J., Heflin, M., B., Jefferson, D., C., Watkins, M., M. and Webb, F., H. (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, Vol. 102, No. B3, pp. 5005-5017. https://doi.org/10.1029/96JB03860