DOI QR코드

DOI QR Code

Cell ID Detection Schemes Using PSS/SSS for 5G NR System

5G NR 시스템에서 PSS/SSS를 이용한 Cell ID 검출 방법

  • Ahn, Haesung (Interdisciplinary Major of Maritime AI Convergence, Department of Electronics and Communications Engineering, Korea Maritime and Ocean University) ;
  • Kim, Hyeongseok (Interdisciplinary Major of Maritime AI Convergence, Department of Electronics and Communications Engineering, Korea Maritime and Ocean University) ;
  • Cha, Eunyoung (Interdisciplinary Major of Maritime AI Convergence, Department of Electronics and Communications Engineering, Korea Maritime and Ocean University) ;
  • Kim, Jeongchang (Interdisciplinary Major of Maritime AI Convergence, Department of Electronics and Communications Engineering, Korea Maritime and Ocean University)
  • 안해성 (한국해양대학교 전자통신공학과 해양인공지능융합전공) ;
  • 김형석 (한국해양대학교 전자통신공학과 해양인공지능융합전공) ;
  • 차은영 (한국해양대학교 전자통신공학과 해양인공지능융합전공) ;
  • 김정창 (한국해양대학교 전자통신공학과 해양인공지능융합전공)
  • Received : 2020.09.14
  • Accepted : 2020.11.11
  • Published : 2020.11.30

Abstract

This paper presents cell ID (cell identity) detection schemes using PSS/SSS (primary synchronization signal/secondary synchronization signal) for 5G NR (new radio) system and evaluates the detection performance. In this paper, we consider two cell ID detection schemes, i.e. two-stage detection and joint detection schemes. The two-stage detection scheme consists of two stages which estimate a channel gain between a transmitter and receiver and detect the PSS and SSS sequences. The joint detection scheme jointly detects the PSS and SSS sequences. In addition, this paper presents coherent and non-coherent combining schemes. The coherent scheme calculates the correlation value for the total length of the given PSS and SSS sequences, and the non-coherent combining scheme calculates the correlation within each group by dividing the total length of the sequence into several groups and then combines them non-coherently. For the detection schemes considered in this paper, the detection error rates of PSS, SSS and overall cell ID are evaluated and compared through computer simulations. The simulation results show that the joint detection scheme outperforms the two-stage detection scheme for both coherent and non-coherent combining schemes, but the two-stage detection scheme can greatly reduce the computational complexity compared to the joint detection scheme. In addition, the non-coherent combining detection scheme shows better performance under the additive white Gaussian noise (AWGN), fixed, and mobile environments.

본 논문에서는 5G NR (new radio) 시스템에서 PSS/SSS (primary synchronization signal/secondary synchronization signal)를 이용한 cell ID (cell identity) 검출 방법들을 제시하고 성능을 평가한다. 시간 영역에서 PSS를 먼저 검출한 후 검출된 PSS 정보를 이용하여 채널 추정 및 SSS의 시퀀스 검출에 사용하는 2단계(2-stage) 검출 방법과 PSS와 SSS 시퀀스를 결합하여 동시에 검출하는 결합 검출(joint detection) 방법을 사용한다. 또한, 추정한 채널 이득을 이용하여 주어진 PSS 및 SSS의 전체 시퀀스 길이의 상관(correlation) 값을 계산하는 coherent 방법과 시퀀스의 전체 길이를 여러 개의 그룹으로 나누어 각 그룹 내에서는 coherent 상관을 계산하고, 이들을 결합하여 전체 그룹의 상관 값을 계산하는 non-coherent combining 방법을 제시한다. 본 논문에서 고려한 검출 방법들에 대해 전산 실험을 통하여 PSS 및 SSS의 개별 검출 에러율과 전체 cell ID 검출 에러율 성능을 비교한다. 전산 실험 결과는 가산 백색 가우시안 잡음환경과 고정 및 이동 환경에서 non-coherent combining 방법이 coherent 방법에 비해 우수한 검출 성능을 보이며, 결합 검출 방법은 2단계 검출 방법에 비해 우수한 성능을 보이나 계산 복잡도 측면에서는 2단계 검출 방법이 보다 낮은 복잡도를 갖는다는 것을 보여준다.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry and Energy (MOTIE), KOREA, through the Education Program for Creative and Industrial Convergence. (Grant Number N0000717).

References

  1. S. Parkvall, E. Dahlman, A. Furuskar and M. Frenne, "NR: The New 5G Radio Access Technology," IEEE Commun Standards Mag., vol. 1, no. 4, pp. 24-30, Dec. 2017. https://doi.org/10.1109/mcomstd.2017.1700042
  2. Study on Scenarios and Requirements for Next Generation Access Technologies - release 16, document TS 38.913, V16.0.0, 3GPP, Jul. 2020.
  3. A. Ghosh, A. Maeder, M. Baker and D. Chandramouli, "5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15," IEEE Access., vol. 7, pp. 127639-127651, Sep. 2019. https://doi.org/10.1109/ACCESS.2019.2939938
  4. S. Henry, A. Alsohaily and E. S. Sousa, "5G is real: Evaluating the compliance of the 3GPP 5G new radio system with the ITU IMT-2020 Requirements," IEEE Access., vol. 8, pp. 42828-42840, Mar. 2020. https://doi.org/10.1109/ACCESS.2020.2977406
  5. X. Meng, J. Li, D. Zhou and D. Yang, "5G technology requirements and related test environments for evaluation," China Commun., vol.13, pp.42-51, Nov. 2016. https://doi.org/10.1109/CC.2016.7405721
  6. C. Li, J. Jiang, W. Chen, T. Ji and J. Smee, "5G ultra-reliable and low-latency systems design," Proceeding of 2017 European Conference on Networks and Communications (EuCNC)., Oulu, Finland, pp. 1-5. Jun. 2017.
  7. Y. Yoon, D. Park and J. Kim, "Gradient-Based Methods of Fast Intra Mode Decision and Block Partitioning in VVC," Journal of Broadcast Engineering., vol. 25, no. 3, pp. 338-345, May. 2020. https://doi.org/10.5909/JBE.2020.25.3.338
  8. Z. Lin, J. Li, Y. Zheng, N. Irukulapati, H. Wang and H. Sahlin, "SS/PBCH Block Design in 5G New Radio (NR)," Proceeding of 2018 IEEE Globecom Workshops (GC Wkshps)., Abu Dhabi, United Arab Emirates, pp. 1-6, Dec. 2018.
  9. A. Omri, M, Shaqfeh, A. Ali and H. Alnuweiri, "Synchronization Procedure in 5G NR Systems," IEEE Access., vol.7, pp.41286-41295, Mar. 2019. https://doi.org/10.1109/ACCESS.2019.2907970
  10. H. Ahn, E. Cha, H. Kim, and J. Kim, "A Study on Cell ID Detection Scheme Using Synchronization Signals for 5G NR System," Proceeding of 2020 The Korean Institute of Broadcast and Media Engineers Summer Conference., pp. 593-595, Jul. 2020.
  11. NR; Physical channels and modulation - release 16, document TS 38.211, V16.2.0, 3GPP, Jun. 2020.
  12. Study on channel model for frequencies from 0.5 to 100 GHz - release 16, document TR 38.901 V16.1.0, 3GPP, Dec. 2019.
  13. COST 207 Management Committee, "COST 207: Digital land mobile radio communications-Final report," Commission Eur. Communities, Brussels, Belgium, ISBN 92-825-9946-9, pp. 135-147, 1989.