DOI QR코드

DOI QR Code

Review of the design, production and tests of compact AC HTS power cables

  • Fetisov, S.S. (Russian Scientific R&D Cable Institute) ;
  • Zubko, V.V. (Russian Scientific R&D Cable Institute) ;
  • Nosov, A.A. (Russian Scientific R&D Cable Institute) ;
  • Zanegin, S.Yu. (Russian Scientific R&D Cable Institute) ;
  • Vysotsky, V.S. (Russian Scientific R&D Cable Institute)
  • Received : 2020.11.13
  • Accepted : 2020.12.20
  • Published : 2020.12.31

Abstract

Power cables made of high temperature superconductors (HTS) are considered as most advanced applications of superconductivity for electro-energetics. Several cables made of the First Generation (1G) HTS wires have been produced and installed to electrical grids worldwide. Power cables made of the Second Generation HTS wires (2G or Coated Conductors) are in active development. Most basic principles of HTS power cables development have been published in many works since 90-ties. In this Review we would like to present our new developments mostly directed to 2G HTS compact power cables. We are presenting the methods to optimize a design of 2G AC compact power cable providing uniform current distribution among cable layers and the production technology approaches to implement such a design. AC losses measurements in such cables and other test methods are described. Some problems of the development 2G HTS power cables with small diameters are discussed. We presented as examples designs, developments and test results of two major coaxial cables designs: single-phase (cable core and a shield) and three-phase (triaxial: with three coaxial phases).

Keywords

References

  1. D. I. Doukas, IEEE Trans. Appl. Supercond., vol. 29, pp. 5401205, 2019. https://doi.org/10.1109/TASC.2019.2895395
  2. A. P. Malozemoff, J. Yuan, C. M. Rey, Superconductors in the power grid. Materials and Applications, edited by C. Rey, Woodhead Publishing Series in Energy, vol. 65, pp. 133-188. 2015
  3. C. Lee, H. Son, Y. Won, et al., Supercond. Sci. Technol., vol. 33, pp. 044006, 2020. https://doi.org/10.1088/1361-6668/ab6ec3
  4. V. E. Sytnikov, et al., Physica C, vol. 310, pp. 357-363, 1998.
  5. P. I. Dolgosheev, V. E. Sytnikov, and G. G. Svalov, Physica C, vol. 310, pp. 367-373, 1998. https://doi.org/10.1016/S0921-4534(98)00493-6
  6. B. Turk, Cryogenics, vol. 14, pp. 448-458, 1974. https://doi.org/10.1016/0011-2275(74)90207-0
  7. M. Daumling, Cryogenics, vol. 39, pp. 759-767, 1999. https://doi.org/10.1016/S0011-2275(99)00087-9
  8. V. E. Sytnikov, G. G. Svalov, and I. B. Peshkov, Cryogenics, vol. 29, pp. 971-974, 1989. https://doi.org/10.1016/0011-2275(89)90242-7
  9. V. E. Sytnikov, et al., Physica C, vol. 401, no. 1, pp. 47-56, 2004. https://doi.org/10.1016/j.physc.2003.09.010
  10. M. Sjostrom, B. Dutoit, and J. Duron, IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 1890-1893, 2003. https://doi.org/10.1109/TASC.2003.812941
  11. S. Kruger Olsen, et al., IEEE Trans. on Appl. Supercond., vol. 9, no. 2, pp. 833-836, 1999. https://doi.org/10.1109/77.783426
  12. ANSYS Multiphysics, Release 15, ANSYS Inc., Canonsburg, PA, USA.
  13. J. A. Demko, I. Sauers, D. R. James, et al., IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 2047-2050, 2007. https://doi.org/10.1109/TASC.2007.897842
  14. M. Stemmle, F. Merschel, M. Noe, and A. Hobl, Proc. IEEE Int. Conf. Appl. Supercond. Electromagn. Devices, pp. 323-326, 2013.
  15. S. S. Fetisov, V. V. Zubko, S. Zanegin, et al., IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 5400305, 2017.
  16. S. Fetisov, V. Zubko, S. Zanegin, A. Nosov, and V. Vysotsky, IEEE Trans. on Appl. Supercond., vol. 28, no. 4, pp. 5400905, 2018.
  17. S. Fetisov, V. Zubko, S. Zanegin, and V. Vysotsky, IOP Conf. Ser.: Mater. Sci. and Eng., vol. 502, pp. 012179, 2019. https://doi.org/10.1088/1757-899X/502/1/012179
  18. E. P. Volkov, V. S. Vysotsky, and V. P. Firsov, Physica C, vol. 482, pp. 87-91, 2012. https://doi.org/10.1016/j.physc.2012.04.024
  19. V. E. Sytnikov, V. S. Vysotsky, A. V. Rychagov et al., IEEE Trans. on Appl. Supercond., vol. 19, no. 3, pp. 1702-1705, 2009. https://doi.org/10.1109/TASC.2009.2019046
  20. V. Vysotsky, A. Nosov, S. Fetisov, et al., IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1001-1004, 2011. https://doi.org/10.1109/TASC.2010.2084063
  21. V. Zubko, A. Nosov, N. Polyakova, et al., IEEE Trans. on Appl. Supercond., vol. 21, no. 3, pp. 988-990, 2011. https://doi.org/10.1109/TASC.2010.2089773
  22. S. Fetisov, A. Nosov, V. Zubko, et al., J. Phys: Conf. Ser., vol. 507, no. 3, pp. 03206305, 2014.
  23. Available at: http://www.superox.ru/en.