DOI QR코드

DOI QR Code

Design of Remote Early Dementia Diagnosis Systems

원격 치매 조기 진단 시스템 설계

  • Choi, Jongmyung (Department of Computer Engineering, Mokpo National University) ;
  • Jeon, Gyeong-Suk (Department of Nursing, Mokpo National University) ;
  • Kim, Sunkyung (Department of Nursing, Mokpo National University) ;
  • Choi, Jungmin (Department of Social Welfare, Mokpo National University) ;
  • Rhyu, Dong Young (Department. of Nutraceutical Resources, Mokpo National University) ;
  • Yoon, Sook (Department of Computer Engineering, Mokpo National University)
  • 최종명 (목포대학교 컴퓨터공학과) ;
  • 전경숙 (목포대학교 간호학과) ;
  • 김선경 (목포대학교 간호학과) ;
  • 최정민 (목포대학교 사회복지학과) ;
  • 류동영 (목포대학교 식의약자원학과) ;
  • 윤숙 (목포대학교 컴퓨터공학과)
  • Received : 2020.08.27
  • Accepted : 2020.10.14
  • Published : 2020.12.31

Abstract

Along with the aging of the population, the number of dementia patients is increasing, and the social and economic burden is also increasing. Currently, the effective way to manage dementia patients is to identify patients with dementia early. However, in rural and island areas where medical staff are scarce, there is a problem that it is difficult to visit a hospital and get an early examination. Therefore, we propose a remote early detection system for dementia to solve the problems. The remote dementia early diagnosis system is a system that allows a patient to receive examination and treatment from a remote dementia expert using remote medical technology based on real-time image communication. The remote early diagnosis system for dementia consists of a local client system used by medical staff at health centers in the island, an image server that transmits, stores and manages images, and an expert client used by remote dementia experts. The local client subsystem satisfies the current medical law's remote collaboration by allowing the patient to use it with the health center's medical staff. In addition, expert clients are used by dementia experts, and can store/manage patient information, analyze patient history information, and predict the degree of dementia progression in the future.

인구 고령화에 따라 치매환자가 크게 늘어나고 있으며, 이에 따른 사회 경제적 부담이 커지고 있다. 현재 치매환자를 효과적으로 관리하는 방법은 조기에 치매 초기 환자를 파악하는 것이다. 그러나 의료진이 부족한 농촌과 섬 지역에서는 병원을 방문해서 조기 검사를 받기 어려운 문제가 있다. 이 문제를 해결하는 방법으로 본 논문에서는 원격 치매 조기 검사 시스템을 제안한다. 원격 치매 조기 검사 시스템은 환자가 실시간 화상 통신을 기반으로 한 원격 의료 기술을 활용하여 원격의 치매 전문가에게 검사 및 진료를 받을 수 있는 시스템이다. 치매 원격 조기 검진 시스템은 섬 지역의 보건지소 의료진이 사용하는 로컬 클라이언트 시스템, 영상을 전송 및 저장/관리하는 화상 서버, 원격 치매 전문가가 활용하는 전문가 클라이언트로 구성된다. 로컬 클라이언트는 환자가 보건지소의 의료진과 같이 사용할 수 있도록 함으로써 현 의료법의 원격협진 기준을 만족시킨다. 또한 전문가 클라이언트는 치매 전문가가 사용하며, 환자의 정보를 저장/관리하고, 환자의 이력 정보를 분석하고 향후 치매 진행 정도를 예측할 수 있다.

Keywords

References

  1. Korean Statistical Information Service, https://kosis.kr/index/index.do (Accessed on 1st. Nov., 2020)
  2. National Institute of Dementia, https://www.nid.or.kr/(Accessed on 1st. Nov., 2020)
  3. C. L. Je, H. J. Kim, I. H. Park, "State Responsibility for Dementia and Supported Decision Making System", Bio-Medical and Law, Vol.21, pp.81-107, 2019.6.
  4. M. O. Jeon, "In front of the era of 1 million dementia patients, How to treat dementia", Cookie News,http://www.kukinews.com/newsView/kuk201905150112, 2019.5.15.
  5. "Dementia, the most feared disease", http://www.gwanak.go.kr/site/enews/news/news_view.do?mvid=1028&aid=7683
  6. T. Pekkala, A. Hall, J. Lotjonen, J. Mattila, H. Soininen, T. Ngandu, T. Laatikainen, M. Kivipelto, and A. Solomon, "Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study", Journal of Alzheimer's Disease, Vol. 55, pp.1055-1067, 2018. https://doi.org/10.3233/jad-160560
  7. Y.K.Yoon, "Serious Mobile Game App Design Planning for Dementia Prevention", Journal of Cultural Product & Design, Vol. 52, pp.47-57, 2018. https://doi.org/10.18555/kicpd.2018.52.5
  8. S.Y.Pi, "The Design and Implement a Healthcare Alert App to Prevent Dementia", Journal of Digital Convergence, Vol.16, No.10, pp.59-67, 2018. https://doi.org/10.14400/JDC.2018.16.10.059
  9. S.M.Yun, H.S.Choi, and M.G.Cho, "Integration of Application Program for Dementia Diagnosis using Biometric Sensor and Oxygen Chamber", Journal of the Korea Academia-Industrial Cooperation Society, Vol.15, No.5, pp.2953-2961, 2014. https://doi.org/10.5762/KAIS.2014.15.5.2953
  10. H.S.Hwang, Y.S.Ko, G.U.Ban and C.S.Kim, "Development of a Smart Application for Protecting Dementia Patients", Journal of Korea Multimedia Society, Vol.16, No.8, pp.1089-1097, 2013. https://doi.org/10.9717/kmms.2013.16.9.1089
  11. S.H.Yeom, S.Y.Son, J.S.Koo, and W.H.Lee, "Development of a Public Transport-Based Location Management Platform for Preventing Missing Persons with Dementia", Journal of Sensor Science and Technology, Vol.28, No.6, pp.385-389, 2019. https://doi.org/10.5369/JSST.2019.28.6.385
  12. A.L.Bossen, H.J.Kim, K.N.Williams, A. E. Steinhoff, and M. Strieker, "Emerging roles for telemedicine and smart technologies in dementia care", Smart Homecare Technol Telehealth, Vol.3, pp.49-57, 2015. https://doi.org/10.2147/shtt.s59500
  13. S.J.Joo, "Telemedicine utilization plan for balanced regional development", Vol.208, pp.32-35, 1999.
  14. J.H.Park, "Early Diagnosis of Dementia", Korean Journal of Family Medicine, Vol.25, No.9, pp.653-660, 2004.
  15. https://www.nid.or.kr/info/diction_list6.aspx?gubun=0601