DOI QR코드

DOI QR Code

디지털 홀로그램 압축 기술 및 표준화 동향

Research and Standardization Trends of Digital Hologram Compression

  • 오관정 (디지털홀로그래피연구실) ;
  • 박중기 (디지털홀로그래피연구실)
  • 발행 : 2019.12.01

초록

Holography is a technique that can acquire and reproduce 3D objects nearly perfectly by representing both the amplitude and phase of light. Recently, digital holography has received considerable attention because it is simpler than analog holography from acquisition to reproduction. The data size of the digital hologram increases tremendously as the quality of digital holograms depends on their pixel pitch and resolution. Hence, efficient compression is necessary to realize holographic imaging services. In this report, we introduce recent digital hologram compression techniques and JPEG Pleno holography, which is the first international standardization activity for digital hologram compression. Furthermore, we discuss the future of this field.

키워드

과제정보

연구 과제번호 : 홀로그램 영상 서비스를 위한 Holo-TV 핵심 기술 개발

연구 과제 주관 기관 : 정보통신기획평가원

참고문헌

  1. D. Gabor, "A new microscopic principle," Nature, vol. 161, no. 4098, p. 777, 1948. https://doi.org/10.1038/161777a0
  2. E. N. Leith and J. Upatnieks, "Reconstructed Wavefronts and Communication Theory," J. Opt. Soc. Am., vol. 52, no. 10, pp. 1123-1128, Oct. 1962. https://doi.org/10.1364/JOSA.52.001123
  3. C. M. Vest, Holographic interferometry, J. Wiley and Sons, New York, 1979.
  4. B. R. Brown and A.W. Lohmann, "Complex Spatial Filtering with Binary Masks," Appl. Opt., vol. 5, no. 6, pp. 967-969, Jun. 1966. https://doi.org/10.1364/AO.5.000967
  5. D. Leseberg and C. Frere, "Computer-generated holograms of 3-D objects composed of tilted planar segments," Appl. Opt., vol. 27, no. 14, pp. 3020-3024, Jul. 1988. https://doi.org/10.1364/AO.27.003020
  6. A. W. Lohmann, "Three-dimensional properties of wavefields," Optik, vol. 51, pp. 105-107, 1978.
  7. T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, "Realistic expression for full-parallax computer-generated holograms with the ray-tracing method," Appl. Opt. 52, A201-A209, 2013. https://doi.org/10.1364/AO.52.00A201
  8. "Overview of Holography 3.0," Doc. ISO/IEC JTC 1/SC 29/WG1 N81055, Vancouver, Canada, Oct. 2018.
  9. E. Darakis and J.J. Soraghan, "Reconstruction domain compression of phase-shifting digital holograms," Appl. Opt, vol. 46, no. 3, pp. 351-356, Jan. 2007. https://doi.org/10.1364/AO.46.000351
  10. H. Yoshikawa and J. Tamai "Holographic image compression by motion picture coding," SPIE Proc, vol. 2652, Practical Holography X, pp. 2-9, March. 1996.
  11. D. Blinder, T. Bruylants, H. Ottevaere, A. Munteanu, and P. Schelkens, "JPEG 2000-based compression of fringe patterns for digital holographic microscopy," Optical Engineering, vol. 53, no. 12, pp. 1-13, Dec. 2014. https://doi.org/10.1016/j.optlaseng.2013.07.020
  12. L. T. Bang et al., "Compression of digital hologram for threedimensional object using Wavelet-Bandelets transform," Opt. Express 19, no. 9, pp. 8019-8031, 2011. https://doi.org/10.1364/OE.19.008019
  13. P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, "Compression of digital holograms via adaptivesparse representation," Optics letters, vol. 35, no. 23, pp. 3883-3885, Dec. 2010. https://doi.org/10.1364/OL.35.003883
  14. P. A. Cheremkhin, and E. A. Kurbatova, "Numerical comparison of scalar and vector methods of digital hologram compression," Holography, Diffractive Optics, and Applications VII. vol. 10022, no. 1002227, pp. 1-10, Oct. 2016.
  15. ISO/IEC JTC1/SC29/WG1, JPEG PLENO Abstract and Executive Summary, WG1N6922, 68th JPEG Meeting, Sydney, Australia, Feb. 2015.
  16. P. Schelkens et al., "JPEG Pleno: Providing representation interoperability for holographic applications and devices," ETRI Journal vo. 41, no. 1, pp. 93-108, 2019. https://doi.org/10.4218/etrij.2018-0509
  17. M. K. Kim, Digital holographic microscopy: Principles, techniques and applications, Springer, 2011.
  18. Ovizio Imaging Systems, "http://www.ovizio.com"
  19. C. M. Vest, Holographic interferometry, J. Wiley and Sons, New York, 1979.
  20. M. Yamaguchi, N. Ohyama, and T. Honda, "Holographic three-dimensional printer: new method," Appl. Opt. vol. 31, no. 2, pp. 217-222, 1992. https://doi.org/10.1364/AO.31.000217
  21. D. Blinder et al., Open access database for experimental validations of holographic compression engines, Int. Quality Multimedia Experience (QoMEX), Pylos‐Nestoras, Greece, May 26-29, pp. 1-6, 2015.
  22. A. Gilles et al., Hybrid approach for fast occlusion processing in computer-generated hologram calculation, Appl. Opt. 55, no. 20, pp. 5459-5470, 2016. https://doi.org/10.1364/AO.55.005459
  23. M. V. Bernardo et al., Holographic representation: hologram plane vs. object plane, Signal Proces. Image Commun. 68, pp. 193-206, 2018. https://doi.org/10.1016/j.image.2018.08.006
  24. Baczewska, M., Kujawińska, M., Skrzypek, E., and Sladowski, D., "Feasibility study of investigation of skin at cellular level by digital holographic microscopy," in [Speckle 2018: VII International Conference on Speckle Metrology], 10834, 108341P, International Society for Optics and Photonics, 2018.
  25. "JPEG Pleno Holography Uses Cases and Requirements V2.0," Doc. ISO/IEC JTC 1/SC 29/WG1 N84037, Brussels, Belgium, July 2019.
  26. "JPEG Pleno Holography - 3D volumetric quality assessment," Doc. ISO/IEC JTC 1/SC 29/WG1 M78045, Rio de Zaneiro, Brazil, Jan.-Feb. 2018.
  27. "Numerical reconstruction software for holography (NRSH)1.1," Doc. ISO/IEC JTC 1/SC 29/WG1 N84053, Brussels, Belgium, July 2019.
  28. "JPEG Pleno Holography ES 1.2," Doc. ISO/IEC JTC 1/SC 29/WG1 M81031, Vancouver, Canada, Oct. 2018.