References
- M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentication, in Proc. Auun. Int. Cryptology Conf., Santa Barbara, CA, USA, Sug. 1996, pp. 1-15.
- M. Barreno et al., Can machine learning be secure? in Proc. ACM Symp. Inf., Comput. Commun. Security (AsiaCCS), ACM, Taipei, Taiwan, Mar. 2006, pp. 16-25.
- R. S. Mrdovic and B. Drazenovic, KIDS: a Keyed Intrusion Detection System, in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability Assessment (DIMVA), IEEE, Bonn, Germany, July 2010, pp. 173-182.
- B. Biggio, G. Fumera, and F. Roli, Adversarial pattern classification using multiple classifiers and randomization, in Proc. Joint IAPR Int. Workshop Structural, Syntactic, Statistical Pattern Recogn., Springer, Orlando, FL, USA, Dec. 2008, pp. 500-509.
- K. Wang, J. Parekh, and S. Stolfo, Anagram: a Content Anomaly Detector Resistant to Mimicry Attack, in Proc. Int. Conf. Recent Adv. Intrusion Detection, Springer, Hamburg, Germany, Sept. 2005, pp. 226-248.
- V. M. Lomte and D. Patil, Survey on keyed IDS and key recovery attacks, Int. J. Sci. Research 4 (2015), no. 12, 846-849.
- R. Perdisci et al., McPAD: a multiple classifier system for accurate payload-based anomaly detection, Comput. Netw. 53 (2009), no. 6, 864-881. https://doi.org/10.1016/j.comnet.2008.11.011
- F. Bergadano et al., Defacement response via keyed learning, in Proc. Int. Conf. Inf. Intell. Syst. Applicat., Larnaca, Cyprus, Aug. 2017, pp. 1-6.
- G. Davanzo, E. Medvet, and A. Bartoli, Anomaly detection techniques for a web defacement monitoring service, Expert Syst. Applicat. 38 (2011), no. 10, 12521-12530. https://doi.org/10.1016/j.eswa.2011.04.038
- K. Scarfone, W. Jansenamd, and M. Tracy, Guide to General Server Security, Section 2.4, Special Publication 800-123, NIST, Gaithersburg, MD, 2008.
- F. Bergadano, D. Gunetti, and C. Picardi, Identity verification through dynamic keystroke analysis, Intell. Data Analysis J. 7 (2003), no. 5, 469-496. https://doi.org/10.3233/IDA-2003-7506
- G. Ruffo and F. Bergadano, Enfilter: a password enforcement and filter tool based on pattern recognition techniques, in Proc. Int. Conf. Image Analysis Process., Cagliari, Italy, Sept. 2005, pp. 75-82.
- S. Y. Ooi, S. C. Tan, and C. W. Ping, Anomaly Based Intrusion Detection through Temporal Classification, in Proc. Int. Conf. Neural Inf. Process., Kuching, Malaysia, Nov. 2014, pp. 612-619.
- J. Kim et al., A lightweight network anomaly detection technique, in Int. Conf. Comput., Netw. Commun.(ICNC), Santa Clara, CA, USA, Jan. 2017, pp. 1-5.
- G. Wang, J. Yang, and R. Li, Imbalanced SVM based anomaly detection algorithm for imbalanced training datasets, ETRI J. 39 (2017), no. 5, 621-631. https://doi.org/10.4218/etrij.17.0116.0879
- P. Parrend et al., Foundations and applications of artificial Intelligence for zero-day and multi-step attack detection, EURASIP J. Inf. Security 4 (2018), 1-21.
- F. Maggi et al., Investigating web defacement campaigns at large, in Proc. Asia Conf. Comput. Commun. Security, Incheon, Rep. of Korea, June 2018, pp. 443-456.
- C. Shen et al., Touch-interaction behavior for continuous user authentication on smartphones, in Proc. IEEE Int. Conf. Biometrics, Phuket, Thailand, May 2015, pp. 157-162.
- M. Kearns and M. Li, Learning in the presence of malicious errors, SIAM J. Comput. 22 (1993), no. 4, 807-837. https://doi.org/10.1137/0222052
- D. Lowd and C. Meek, Adversarial Learning, in Proc. ACM Conf. Knowledge Discovery Data Mining, ACM, Chicago, IL, UDS, Aug. 2005, pp. 641-647.
- L. Huang et al., Adversarial machine learning, in Proc. ACM Workshop Security Artif. Intell., Chicago, IL, USA, Oct. 2011, pp. 43-58.
- N. Srndic and P. Laskov, Practical evasion of a learning-based classifier: A case study, in Proc. IEEE Symp.Security Privacy, San Jose, CA, USA, May 2014, pp. 197-211.
- J. E. Tapiador et al., Key-recovery attacks on KIDS, a keyed anomaly detection system, IEEE Trans. Dependable Secure Comput. 12 (2015), no. 3, 312-325. https://doi.org/10.1109/TDSC.2013.39
- C. Aggarwal, J. Pei, and B. Zhang, On privacy preservation against adversarial data mining, in Proc. ACM SIGKDD Int. Conf. Knowled. Discovery Data Mining, ACM, Philadelphia, PA, USA, Aug. 2006, pp. 510-516.
- R. Bendale et al., KIDS: Keyed Anomaly Detection System, Int. J. Adv. Eng. Res. Dev. 12 (2017), 312-325.
- H. Xiao et al., Is feature selection secure against training data poisoning? in Proc. Int. Conf. Mach. Learn., Lille, France, July 2015, pp. 1689-1698.
- F. Bergadano and A. Giordana, A knowledge intensive Approach to concept induction, in Proc. Fifth Int. Conf. Mach. Learn., Margan Kaufmann Publishers, Ann Arbor, MI, USA, June 1988, pp. 305-317.
- T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2, RFC 5246, IETF, 2008, https://doi.org/10.17487/rfc5246.
- J. Arkkom et al., MIKEY: Multimedia Internet KEYing, RFC3820, IETF, 2004, https://doi.org/10.6028/NIST.SP.800-108.
- L. Chen, Recommendation for Key Derivation Using Pseudorandom Functions, NIST Special Publication 800-108, NIST, 2009.
- Y. Vorobeychik and B. Li, Optimal randomized classification in adversarial settings, in Proc. Conf. Autonomous Agents Multiagent Syst., Paris, France, May 2014, pp. 485-492.
- S. Rota Bulo et al., Randomized prediction games for adversarial machine, learning, IEEE Trans. Neural Netw. Learn. Syst. 28 (2017), no. 11, 2466-2478. https://doi.org/10.1109/TNNLS.2016.2593488
- N. Munaiah et al., Are Intrusion Detection Studies Evaluated Consistently? A Systematic Literature Review, Technical Report, University of Rochester, 2016.
- S. Anwar et al., From intrusion detection to an intrusion response system: fundamentals, requirements, and future directions, MDPI Algorithms J. 10 (2017), no. 39, 1-24.
- S. Kim and B. B. Kang, FriSM: malicious exploit kit detection via feature-based string-similarity matching, in Proc. Int. Conf. Security Privacy Commun. Netw., Singapore, Aug. 2018, pp. 416-432.
- Y. Bae, I. Kim, and S. O. Hwang, An efficient detection of TCP Syn flood attacks with spoofed IP addresses, J. Intell. Fuzzy Syst. 35 (2018), no. 6, 5983-5991. https://doi.org/10.3233/JIFS-169839
- Q. T. Hai and S. O. Hwang, An efficient classification of malware behavior using deep neural network, J. Intell. Fuzzy Syst. 35 (2018), no. 6, 5801-5814. https://doi.org/10.3233/JIFS-169823
- K. Borgolte, C. Kruegel, and G. Vigna, Meerkat: Detecting website defacements through image-based object recognition, in Proc. USENIX Security Symp., Washington, D.C., USA, Aug. 2015, pp. 595-610.
- A. Bartoli, G. Davanzo, and E. Medvet, A framework for largescale detection of web site defacements, ACM Trans. Internet Technol. 10 (2010), no. 3, 1-3.
- X. Liao et al., Seeking nonsense, looking for trouble: efficient promotional-infection detection through semantic inconsistency search, in Proc. IEEE Symp. Security Privacy, San Jose, CA, USA, May 2016, pp. 707-723.
- A. Basso and F. Bergadano, Anti-bot strategies based on human interactive proofs, in Handbook of Information and Communication Security, Springer, New York, 2010, pp. 273-291.