DOI QR코드

DOI QR Code

Concealment of iris features based on artificial noises

  • Received : 2019.03.23
  • Accepted : 2019.08.28
  • Published : 2019.10.01

Abstract

Although iris recognition verification is considered to be the safest method of biometric verification, studies have shown that iris features may be illegally used. To protect iris features and further improve the security of iris recognition and verification, this study applies the Gaussian and Laplacian mechanisms and to hide iris features by differentiating privacy. The efficiency of the algorithm and evaluation of the image quality by the image hashing algorithm are selected as indicators to evaluate these mechanisms. The experimental results indicate that the security of an iris image can be significantly improved using differential privacy protection.

Keywords

References

  1. T. Root et al, Fingerprints of global warming on wild animals and plants, Nature 421 (2003), no. 6918, 57-60. https://doi.org/10.1038/nature01333
  2. Y. Zheng, D. K. Pal, and M. Savvides, Ring loss: Convex feature normalization for face recognition, in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., Salt Lake Sity, Canada, June. 2018, pp. 5089-5097.
  3. M. Mottalli, M. Mejail, and J. Jacobo-Berlles, Flexible image segmentation and quality assessment for real-time iris recognition, in Proc. IEEE Int. Conf. Image Process. Cairo, Eqypt, Nov. 2010, pp. 1941-1944.
  4. L. E. Ali, J. Luo, and J. Ma, Iris recognition from distant images based on multiple feature descriptors and classifiers, in Proc. IEEE Int. Conf. Signal Process., Chengdu, China, Nov. 2016, pp. 1357-1362.
  5. K. Wang and K. Ajay, Cross-spectral iris recognition using cnn and supervised discrete hashing, Pattern Recogn. 86 (2019), 85-98. https://doi.org/10.1016/j.patcog.2018.08.010
  6. Z. Zhang et al, Bilateral privacy-preserving utility maximization protocol in database-driven cognitive radio networks, IEEE Trans. Depend. Secure Comput. (preprint), https://doi.org/10.1109/TDSC.2017.2781248.
  7. J. Fridrich, Image encryption based on chaotic maps, in Proc. IEEE Int. Conf. Syst. Man, Cybernetics, Orlando, FL, USA, Oct. 1997, pp. 1105-1110.
  8. J. Fridrich, Symmetric ciphers based on two-dimensional chaotic maps, Int. J. Bifurcat. Chaos 8 (1998), no. 6, 1259-1284. https://doi.org/10.1142/S021812749800098X
  9. K. Simoens et al, A framework for analyzing template security and privacy in biometric authentication systems, IEEE Trans. Inf. Forensics Secur. 7 (2012), no. 2, 833-841. https://doi.org/10.1109/TIFS.2012.2184092
  10. W. A. A. Torres, N. Bhattacharjee, and B. Srinivasan, Effectiveness of fully homomorphic encryption to preserve the privacy of biometric data, in Proc. Int. Conf. Inf. Integ. Web-based Applicat. Serv., Hanoi, Viet Nam, Dec. 2014, pp. 152-158.
  11. J. Bringer et al, Faster secure computation for biometric identification using filtering, in Proc. Int. Conf. Biometrics, New Delhi, India. 2013, pp. 257-264.
  12. B. Hayes, Cloud computing, Web Sci. 51 (2008), no. 7, 9-11.
  13. J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, A survey of recent results in networked control systems, Proc. IEEE 95 (2007), no. 1, 138-162. https://doi.org/10.1109/JPROC.2006.887288
  14. H. Zhang et al, Privacy and performance trade-off in cyber-physical systems, IEEE Netw. 30 (2016), no. 2, 62-66. https://doi.org/10.1109/MNET.2016.7437026
  15. N. Srichumroenrattana, R. Lipikorn, and C. Lursinsap, Stereoscopic face reconstruction from a single 2-dimensional face image using orthogonality of normal surface and y-ratio, Int. J. Pattern Recognit. Artif. Intell. 30 (2016), no. 2, 1-27.
  16. B. Benjamin et al, DP-finder: Finding differential privacy violations by sampling and optimization, in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Toronto, Canada, Oct. 2018, pp. 508-524.
  17. A. Martin et al, Deep learning with differential privacy, in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Vienna, Austria, Oct. 2016, pp. 308-318.
  18. C. Thee et al, MVG mechanism: differential privacy under matrixvalued query, in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Toronto, Canada, Oct. 2018, pp. 1-17.
  19. A. Bhowmick et al, Protection against reconstruction and its applications in private federated learning, Mach. Learn. 1812 (2018), 1-45.
  20. R. Venkatesan, S.-M. Koon, and M. Jakubowski, Robust image hashing, in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2000, pp. 664-666.
  21. T. Kalker, J. Haitsma, and J. Oostveen, Issues with digital watermarking and perceptual hashing, in Proc. Int. Symp. Converg. IT Commun., Denver, CO, USA, 2001, pp. 189-197.
  22. J. Fridrich and M. Goljan, Robust hash functions for digital watermarking, in Proc. Int. Conf. Inf. Technol. Coding Comput., Las Vegas, NV, USA, Mar. 2000, pp. 1-6.
  23. L. Chun-Shien et al, Robust mesh-based hashing for copy detection and tracing of images, in Proc. IEEE Int. Conf. Multimedia Expo, Taipei, Taiwan, June 2004, pp. 731-734.
  24. S. Kozat, R. Venkatesan, and M. K. Mihcak, Robust perceptual image hashing via matrix invariants, in Proc. Int. Conf. Image Process., Singapore, Oct. 2004, pp. 3443-3446.
  25. Z. Tang et al, Robust image hashing using ring-based entropies, Signal Process. 93 (2013), no. 7, 2061-2069. https://doi.org/10.1016/j.sigpro.2013.01.008
  26. H. Wei, J. X. Yu, and C. Lu, String similarity search: a hashbased approach, IEEE Trans. Knowl. Data Eng. 30 (2018), no. 1, 170-184. https://doi.org/10.1109/TKDE.2017.2756932
  27. Z. Liu et al, Contextual hashing for large-scale image search, IEEE Trans. Image Process. 23 (2014), no. 4, 1606-1614. https://doi.org/10.1109/TIP.2014.2305072
  28. M. De Marsico et al, Firme: face and iris recognition for mobile engagement, Image Vis. Comput. 32 (2014), no. 12, 1161-1172. https://doi.org/10.1016/j.imavis.2013.12.014
  29. W. Boles, A security system based on human iris identification using wavelet transform, in Proc. Int. Conf. Convent. Knowl. Based Intell. Electron. Syst., Adelaide, Australia, May 1997, pp. 533-541.
  30. C. Dwork, Differential privacy, in Proc. Int. Colloquium Automata Lang. Program., Venice, Italy, July 2006, pp. 1-12.
  31. J. Soria-Comas et al, Individual differential privacy: a utilitypreserving formulation of differential privacy guarantees, IEEE Trans. Inf. Forensics Secur. 12 (2017), no. 6, 1418-1429. https://doi.org/10.1109/TIFS.2017.2663337
  32. S. Goryczka and X. Li, A comprehensive comparison of multiparty secure additions with differential privacy, IEEE Trans. Dependable Secure Comput. 14 (2017), no. 5, 463-477. https://doi.org/10.1109/TDSC.2015.2484326
  33. F. Liu, Generalized gaussian mechanism for differential privacy, IEEE Trans. Knowl. Data Eng. 31 (2019), no. 4, 747-756. https://doi.org/10.1109/TKDE.2018.2845388
  34. Y. Feng et al, Visual tracking via multi-experts combined with average hash model, Proc. Asian Conf. pattern recognition. (2016), 331-335.
  35. X. Niu and Y. Jiao, An overview of perceptual hashing, Acta Electronica Sinica 36 (2008), no. 7, 1405-1411. https://doi.org/10.3321/j.issn:0372-2112.2008.07.029
  36. G. Vrcek and P. Peer, Iris-based human verification system: a research prototype, in Proc. Int. Conf. Syst., Chalkida, Greece, June 2009, pp. 1-4.