DOI QR코드

DOI QR Code

양자 정보 기술을 위한 양자 광원 연구 동향

Research Trend of Quantum Light Source for Quantum Information Technology

  • 발행 : 2019.10.01

초록

A quantum light source is an essential element for quantum information technology, including quantum communication, quantum sensor, and quantum computer. Quantum light sources including photon number state, entangled state, and squeezed state can be divided into two types according to the generation mechanism, namely single emitter and non-linear based systems. The single emitter platform contains atom/ion trap, solid-state defect/color center, two-dimensional material, and semiconductor quantum dot, which can emit deterministic photons. The non-linear based platform contains spontaneous parametric down-conversion and spontaneous four-wave mixing, which can emit probabilistic photon pairs. For each platform, we give an overview of the recent research trends of the generation, manipulation, and integration of single photon and entangled photon sources. The characteristics of quantum light sources are investigated for each platform. In addition, we briefly introduce quantum sensing, quantum communication, and quantum computing applications based on quantum light sources. We discuss the challenges and prospects of quantum light sources for quantum information technology.

키워드

과제정보

연구 과제번호 : Development of quantum light source for operation of highly-relivable quantum sensors

연구 과제 주관 기관 : Institute of Information & communications Technology Planning & Evaluation (IITP)

참고문헌

  1. https://www.nobelprize.org/prizes/physics/2017/press-release/
  2. J. Aasi et al., "Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light," Nat. Photon., vol. 7, no. 8, 2013, pp. 613-619. https://doi.org/10.1038/nphoton.2013.177
  3. S. K. Liao et al., "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, no. 3, 2018, p. 030501. https://doi.org/10.1103/PhysRevLett.120.030501
  4. https://www.research.ibm.com/ibm-q/system-one/
  5. H. Wang, et al., "High-efficiency multiphoton boson sampling," Nat. Photon. vol. 11, no. 6, 2017, pp. 361-365. https://doi.org/10.1038/nphoton.2017.63
  6. M. Planck, "Uber eine Verbesserung der Wienschen Spectralgleichung," Verhandl. Dtsc. Phys. Ges, vol. 2, 1900, p. 202.
  7. A. Einstein, "Indeed, it seems to me that the observations regarding black-body radiation, photoluminescence, production of cathode rays by ultraviolet," Annalen der Physik, vol. 17, 1905, pp. 132-148. https://doi.org/10.1002/andp.19053220607
  8. A. H. Compton, "A Quantum Theory of the Scattering of X-rays by Light Elements," Phys. Rev., vol. 21, no. 5, 1923, pp. 483-502. https://doi.org/10.1103/PhysRev.21.483
  9. G. Lewis, "The Conservation of Photons," Nature (London), vol. 118, 1926, pp. 874-875. https://doi.org/10.1038/118874a0
  10. A. Einstein et al., "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?," Phys. Rev., vol. 47, 1935, pp. 777-780. https://doi.org/10.1103/PhysRev.47.777
  11. J. S. Bell, "Physics Long Island City," N.Y., vol. 1, no. 195, 1964, p. 1.
  12. J. F. Clauser et al., "Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett., vol. 23, no. 15, 1969, pp. 880-884. https://doi.org/10.1103/PhysRevLett.23.880
  13. R. H. Brown et al., "Correlation between photons in two coherent beams of light," Nature, vol. 177, no. 4497, 1956, pp. 27-29. https://doi.org/10.1038/177027a0
  14. H. J. Kimble et al., "Photon Antibunching in Resonance Fluorescence," Phys. Rev. Lett., vol. 39, no. 11, 1977, pp. 691-695. https://doi.org/10.1103/PhysRevLett.39.691
  15. C. K. Hong et al., "Measurement of Subpicosecond Time Intervals between Two Photons by Interference," Phys. Rev. Lett., vol. 59, no. 18, 1987, pp. 2044-2046. https://doi.org/10.1103/PhysRevLett.59.2044
  16. Z. Y. Ou et al., "Violation of Bell's Inequality and Classical Probability in a Two-Photon Correlation Experiment," Phys. Rev. Lett., vol. 61, no. 1, 1988, pp. 50-53. https://doi.org/10.1103/PhysRevLett.61.50
  17. Y. Colombe et al., "Strong Atom-Field Coupling For Bose-Einstein Condensates in an Optical Cavity on a Chip," Nature, vol. 450, 2007, pp. 272-276. https://doi.org/10.1038/nature06331
  18. M. Trupke et al., "Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity," Phys. Rev. Lett., vol. 99, 2007, p. 063601. https://doi.org/10.1103/PhysRevLett.99.063601
  19. B. Dayan et al., "A Photon Turnstile Dynamically Regulated by One Atom," Science, vol. 319, no. 5866, 2008, pp. 1062-1065. https://doi.org/10.1126/science.1152261
  20. T. Aoki et al., "Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity," Phys. Rev. Lett., vol. 102, 2009, p. 083601. https://doi.org/10.1103/PhysRevLett.102.083601
  21. M. Keller et al., "Continuous Generation of Single Photons with Controlled Waveform in an Ion-Trap Cavity System," Nature, vol. 431, 2004, pp. 1075-1078. https://doi.org/10.1038/nature02961
  22. I. Aharonovich. et al., "Diamond nanophotonics," Adv. Opt. Mater., vol. 2, no. 10, 2014, pp. 911-928. https://doi.org/10.1002/adom.201400189
  23. A. Sipahigil et al., "Indistinguishable photons from separated silicon-vacancy centers in diamond," Phys. Rev. Lett., vol. 113, 2014, p. 113602. https://doi.org/10.1103/PhysRevLett.113.113602
  24. A. Sipahigil et al., "Quantum interference of single photons from remote nitrogen-vacancy centers in diamond," Phys. Rev. Lett., vol. 108, 2012, p. 143601. https://doi.org/10.1103/PhysRevLett.108.143601
  25. V. M. Acosta et al., "Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond," Phys. Rev. Lett., vol. 108, 2012, p. 206401. https://doi.org/10.1103/PhysRevLett.108.206401
  26. L. J. Rogers et al., "Multiple intrinsically identical single-photon emitters in the solid state," Nat. Commun., vol. 5, no. 4739, 2014, pp. 1-6.
  27. A. Lohrmann et al., "Single-photon emitting diode in silicon carbide," Nat. Commun., vol. 6, no. 7783, 2015, pp. 1-7.
  28. J. Wang et al., "Bright room temperature single photon source at telecom range in cubic silicon carbide," Nat. Commun., vol. 9, no. 4106, 2018, pp. 1-6. https://doi.org/10.1038/s41467-017-02088-w
  29. A. M. Berhane et al., "Bright room-temperature single-photon emission from defects in gallium nitride," Adv. Mater. vol. 29, no. 12, 2017, p. 1605092. https://doi.org/10.1002/adma.201605092
  30. A. M. Berhane et al., "Photoinduced blinking in a solid-state quantum system," Phys. Rev. B, vol. 96, 2017, p. 041203. https://doi.org/10.1103/PhysRevB.96.041203
  31. Y. Zhou et al., "Room-temperature solid state quantum emitters in the telecom range," Sci. Adv. vol. 4, 2018, p. 3580.
  32. M. Toth et al., "Single photon sources in atomically thin materials," Ann. Rev. Phys. Chem, vol. 70, 2019, pp. 123-142. https://doi.org/10.1146/annurev-physchem-042018-052628
  33. T. T. Tran et al., "Quantum emission from hexagonal boron nitride monolayers," Nat Nanotechnol, vol. 11, 2016, pp. 37-41. https://doi.org/10.1038/nnano.2015.242
  34. L. J. Martinez et al., "Efficient single photon emission from a high-purity hexagonal boron nitride crystal," Phys. Rev. B, vol. 94, 2016, p. 121405. https://doi.org/10.1103/PhysRevB.94.121405
  35. T. T. Tran et al., "Robust multicolor single photon emission from point defects in hexagonal boron nitride," ACS Nano, vol. 10, 2016, pp. 7331-7338. https://doi.org/10.1021/acsnano.6b03602
  36. A. Dietrich et al., "Persistence of Fourier transform limited lines from a solid state quantum emitter in hexagonal boron nitride," arXiv: 1903.02931, 2019, pp. 1-14.
  37. S. Ghosh et al., "Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes," Science, vol. 330, no. 6011, 2010, pp. 1656-1659. https://doi.org/10.1126/science.1196382
  38. Y. Piao et al., "Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects," Nat. Chem., vol. 5, 2013, pp. 840-845. https://doi.org/10.1038/nchem.1711
  39. X. He et al., "Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes," Nat. Photon., vol. 11, 2017, pp. 577-582. https://doi.org/10.1038/nphoton.2017.119
  40. X. Ma et al., "Room-temperature single-photon generation from solitary dopants of carbon nanotubes," Nat. Nanotech., vol. 10, 2015, pp. 671-675. https://doi.org/10.1038/nnano.2015.136
  41. J.-Y. Marzin et al., "Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs," Phys. Rev. Lett., vol. 73, no. 5, 1994, pp. 716-719. https://doi.org/10.1103/PhysRevLett.73.716
  42. P. Michler et al., "A Quantum Dot Single-Photon Turnstile Device," Science, vol. 290, no. 5500, 2000, pp. 2282-2285. https://doi.org/10.1126/science.290.5500.2282
  43. N. Somaschi et al., "Near-optimal single-photon sources in the solid state," Nat. Photon., vol. 10, 2016, pp. 340-345. https://doi.org/10.1038/nphoton.2016.23
  44. M. Arcari et al., "Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide," Phys. Rev. Lett., vol. 113, 2014, p. 093603. https://doi.org/10.1103/PhysRevLett.113.093603
  45. G. Kirsanske et al., "Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide," Phys. Rev. B, vol. 96, 2017, p. 165306. https://doi.org/10.1103/PhysRevB.96.165306
  46. http://quandela.com/products/
  47. https://sparrowquantum.com/
  48. T. Miyazawa et al., "Single-photon emission at $1.5{\mu}m$ from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities," Appl. Phys. Lett. vol. 109, 2016, p. 132106. https://doi.org/10.1063/1.4961888
  49. R. Katsumi et al., "Transfer-printed single-photon sources coupled to wire waveguides," Optica, vol. 5, no. 6, 2018, pp. 691-694. https://doi.org/10.1364/OPTICA.5.000691
  50. L. Sapienza et al., "Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission," Nat. Commun., vol. 6, no. 7833, 2015, pp. 1-8.
  51. A. Mohan et al., "Polarization-entangled photons produced with high-symmetry site-controlled quantum dots," Nat. Photon., vol. 4, 2010, pp. 302-306. https://doi.org/10.1038/nphoton.2010.2
  52. T. H. Chung et al., "Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes," Nat. Photon., vol. 10, 2016, pp. 782-787. https://doi.org/10.1038/nphoton.2016.203
  53. O. Benson et al., "Regulated and Entangled Photons from a Single Quantum Dot," Phys. Rev. Lett., vol. 84, no. 11, 2000, pp. 2513-2516. https://doi.org/10.1103/PhysRevLett.84.2513
  54. R. Trotta et al., "Wavelength-tunable sources of entangled photons interfaced with atomic vapours," Nat. Commun., vol. 7, 2016, p. 10375. https://doi.org/10.1038/ncomms10375
  55. Y. Chen et al., "Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots," Nat. Commun., vol. 7, 2016, p. 10387. https://doi.org/10.1038/ncomms10387
  56. T. Muller et al., "A quantum light-emitting diode for the standard telecom window around 1,550nm," Nat. Commun., vol. 9, no. 862, 2018, pp. 1-6. https://doi.org/10.1038/s41467-017-02088-w
  57. D. J. P. Ellis et al., "Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit," Appl. Phys. Lett., vol. 112, 2018, p. 211104. https://doi.org/10.1063/1.5028339
  58. H. Wang et al., "On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability," Phys. Rev. Lett., vol. 122, no. 11, 2019, p. 113602. https://doi.org/10.1103/PhysRevLett.122.113602
  59. W. H. Louisell et al., "Quantum Fluctuations and Noise in Parametric Processes. I.," Phys. Rev., vol. 124, 1961, pp. 1646-1654. https://doi.org/10.1103/PhysRev.124.1646
  60. B. Ya. Zel'dovich et al., "Field statistics in parametric luminescence," JETP Lett., vol. 9, 1969, p. 69.
  61. D. C. Burnham et al., "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett., vol. 25, no. 2, 1970, pp. 84-87. https://doi.org/10.1103/PhysRevLett.25.84
  62. E. J. Mason et al., "Efficient generation of tunable photon pairs at 0.8 and $1.6{\mu}m$," Opt. Lett., vol. 27, no. 23, 2002, pp. 2115-2117. https://doi.org/10.1364/OL.27.002115
  63. R. Horn et al., "Monolithic Source of Photon Pairs," Phys. Rev. Lett., vol. 108, 2012, p. 153605. https://doi.org/10.1103/PhysRevLett.108.153605
  64. P. Sarrafi et al., "Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III-V chip," Appl. Phys. Lett., vol. 103, 2013, p. 251115. https://doi.org/10.1063/1.4851095
  65. T. Zhong et al., "High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide," Opt. Express, vol. 17, no. 14, 2009, pp. 12019-12030. https://doi.org/10.1364/OE.17.012019
  66. S. D. Dyer et al., "High-efficiency, ultra low-noise all-fiber photon-pair source," Opt. Express, vol. 16, no. 13, 2008, pp. 9966-9977. https://doi.org/10.1364/OE.16.009966
  67. Q. Lin et al., "Silicon waveguides for creating quantum-correlated photon pairs," Opt. Lett., vol. 31, no. 21, 2006, pp. 3140-3142. https://doi.org/10.1364/OL.31.003140
  68. J. E. Sharping et al., "Generation of correlated photons in nanoscale silicon waveguides," Opt. Express, vol. 14, no. 25, 2006, pp. 12388-12393. https://doi.org/10.1364/OE.14.012388
  69. L. O'Faolain et al., "Loss engineered slow light waveguides," Opt. Express, vol. 18, no. 26, 2010, pp. 27627-27638. https://doi.org/10.1364/OE.18.027627
  70. M. J. Collins et al., "Integrated spatial multiplexing of heralded single-photon sources," Nat. Commun., vol. 4, no. 2582, 2013, pp. 1-7.
  71. S. Azzini et al., "From classical four-wave mixing to parametric fluorescence in silicon microring resonators," Opt. Lett., vol. 37, no. 18, 2012, pp. 3807-3809. https://doi.org/10.1364/OL.37.003807
  72. S. Azzini et al., "Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nanocavities," Appl. Phys. Lett., vol. 103, 2013, p. 031117. https://doi.org/10.1063/1.4812640
  73. J. Goodman, "Introduction to Fourier Optics, McGraw-Hill Physical and Quantum Electronics Series," 1968.
  74. M. Unternahrer et al., "Super-resolution quantum imaging at the Heisenberg limit," Optica, vol. 5, no. 9, 2018, pp. 1150-1154. https://doi.org/10.1364/OPTICA.5.001150
  75. G. Brida et al., "Experimental realization of sub-shot-noise quantum imaging," Nat. Photon., vol. 4, 2010, pp. 227-230. https://doi.org/10.1038/nphoton.2010.29
  76. J. Dowling, "Quantum Lidar-Remote Sensing at the Ultimate Limit," Air Force Research Laboratory Technical Report, ADA502521, AFRL-RI-RS-TR-2009-180, 2009.
  77. K. Takemoto et al., "Quantum key distribution over 120km using ultrahigh purity single-photon source and superconducting single-photon detectors," Sci. Rep., vol. 5, no. 14383, 2015, pp. 1-7.
  78. M. Rau et al., "Free space quantum key distribution over 500meters using electrically driven quantum dot single-photon sources-a proof of principle experiment," New J. Phys., vol. 16, no. 043003, 2014, pp. 1-10.
  79. A. K. Ekert, "Quantum cryptography based on Bell's theorem," Phys. Rev. Lett., vol. 67, no. 6, 1991, pp. 661-663. https://doi.org/10.1103/PhysRevLett.67.661
  80. C. H. Bennett et al., "Quantum cryptography without Bell's theorem," Phys. Rev. Lett., vol. 68, no. 5, 1992, pp. 557-559. https://doi.org/10.1103/PhysRevLett.68.557
  81. S.-K. Liao et al., "Satellite-to-ground quantum key distribution," Nature, vol. 549, 2017, pp. 43-47. https://doi.org/10.1038/nature23655
  82. J. Yin et al., "Satellite-based entanglement distribution over 1200 kilometers," Science, vol. 356, no. 6343, 2017, pp. 1140-1144. https://doi.org/10.1126/science.aan3211
  83. J. Yin et al., "Satellite-to-Ground Entanglement-Based Quantum Key Distribution," Phys. Rev. Lett., vol. 119, 2017, p. 200501. https://doi.org/10.1103/PhysRevLett.119.200501
  84. N. Sangouard et al., "Quantum repeaters based on atomic ensembles and linear optics," Rev. Mod. Phys., vol. 83, 2011, pp. 33-80. https://doi.org/10.1103/RevModPhys.83.33
  85. S. Muralidharan et al., "Optimal architectures for long distance quantum communication," Sci. Rep., vol. 6, no. 20463, 2016, pp. 1-10. https://doi.org/10.1038/s41598-016-0001-8
  86. R. Courtland, "China's 2,000-km Quantum Link Is Almost Complete," IEEE Spectrum, Technology, Engineering, and Science News, 26 Oct., vol. 53, no. 11, 2016, pp. 11-12.
  87. S. Takeda et al., "Toward large-scale fault-tolerant universal photonic quantum computing," Appl. Phys. Lett. Photonics, vol. 4, 2019, p. 060902.
  88. https://psiquantum.com/
  89. https://www.xanadu.ai/
  90. D. J. Brod et al., "Photonic implementation of boson sampling: a review," Advanced Photonics, vol. 1, no.3, 2019, p. 034001.