DOI QR코드

DOI QR Code

전기가변 고분자 소재를 이용한 응용소자

Electro-active Polymer and Dielectric Elastomer Technology for Haptic Interface, Muscular Enhancement, and Tunable Optical Components

  • 발행 : 2019.08.01

초록

Electro-active polymers and dielectric elastomers have many intriguing properties that enable smart interfaces and electrically tunable optical systems, such as haptic feedback devices, artificial muscles, and expansion-tunable optical elements. These device classes are of great interest owing to their promising roles in next-generation technologies including virtual or augmented reality, human sensing and muscular enhancement, and artificial skins. In this report, we review basic principles, current state-of-the-art techniques, and future prospects of electro-active and dielectric elastomer technology. We describe chemical and physical properties of the most promising polymer substances, essential elementary architectures for artificial muscle-like functionalities, and their applications to haptic interfaces, muscular enhancement, and focus-tunable optical elements.

키워드

과제정보

연구 과제번호 : 상황적합형 상호작용 제공 사용자 체험형 인터페이스 기술 개발, 초점가변 폴리머 렌즈/미러 개발, 유연 소재를 이용한 소프트 액추에이터 개발

참고문헌

  1. M. D. Green et al., "Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers," Polymer, vol. 53, no. 17, Aug. 2012, pp. 3677-3686. https://doi.org/10.1016/j.polymer.2012.06.023
  2. W. Zheng, C. J. Cornelius, "Solvent tunable multi-block ionomer morphology and its relationship to modulus, water, swelling, directionally dependent ion transport, and actuator performance," Polymer , vol. 103, Oct. 2016, pp. 104-111. https://doi.org/10.1016/j.polymer.2016.09.055
  3. X.-L. Wang, I.-K. Oh, S. Lee, "Electroactive artificial muscle based on crosslinked PVA/SPTES," Sens. Actuators B-Chem., vol. 150, no. 1, Sept. 2010, pp. 57-64. https://doi.org/10.1016/j.snb.2010.07.042
  4. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, "High speed electrically actuated elastomers with strain greater than 100%," Sci., vol. 287, no. 5454, Feb. 2000, pp. 836-839. https://doi.org/10.1126/science.287.5454.836
  5. P. Zheng, T. J. McCarthy, "Rediscovering silicones: Molecularly smooth, low surface energy, unfilled, uv/vis-transparent, extremely cross-linked, thermally stable, hard, elastic PDMS," Langmuir , vol. 26, no. 24, Dec. 2010, pp. 18585-18590. https://doi.org/10.1021/la104065e
  6. L. Zhang et al., "Highly improved electro-actuation of dielectric elastomers by molecular grafting of azobenzenes to silicone rubber," J. Mater. Chem. C , vol. 3, no. 19, Apr. 2015, pp. 4883-4889. https://doi.org/10.1039/C5TC00368G
  7. 김현곤, 경기욱, 박준석, 한동원, "햅틱 인터페이스 기술 동향," 한국정보기술학회지, 제8권 제1호, 2010, pp. 7-15.
  8. 최승문, 김상연, 전석희, 김정현, "융합연구리뷰_part2가상 햅틱장치를 통한 몰입형 VR/AR 시스템 현황 및 발전 방향," 융합연구리뷰, 제4권 제9호, 2018, pp. 1-80.
  9. S. Mun et al., "Electro-active polymer based soft tactile interface for wearable device," IEEE Trans. Haptic, vol. 11, no. 1, 2018, pp. 15-21. https://doi.org/10.1109/TOH.2018.2805901
  10. P. Lotz, M. Matysek and H. F. Schlaak, "Fabrication and application of miniaturized dielectric elastomer stack actuators," IEEE/ASME Trans. Mech., vol. 16, no. 1, 2011, pp. 58-66. https://doi.org/10.1109/TMECH.2010.2090164
  11. H. S. Lee et al., "Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator," Sen. Act-A: Phy., vol. 205, 2014, pp. 191-198. https://doi.org/10.1016/j.sna.2013.11.009
  12. S. Biswas, Y. Visell, "Emerging material technologies for haptics," Adv. Mater. Technol., vol. 4, no. 4, Apr. 2019, pp. 1900042:1-30.
  13. K. -J. Cho et al., "Review of manufacturing processes for soft biomimetic robots," Int. J. Precision Eng. Manuf., vol. 10, no. 3, July 2009, pp. 171-181. https://doi.org/10.1007/s12541-009-0064-6
  14. D. Pyo et al., "Silver-nanowires coated pitch-tuned coiled polymer actuator for large contractile strain under light-loading," Int. J. Precision Eng. Manuf., Dec. 2018, pp. 1895-1900. https://doi.org/10.1007/s12541-018-0217-6
  15. C. S. Haines et al., "Artificial muscles from fishing line and sewing thread," Sci., vol. 343, 2014, pp. 868-872. https://doi.org/10.1126/science.1246906
  16. M. D. Lima et al., "Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles," Sci., vol. 338, 2012, pp. 928-932. https://doi.org/10.1126/science.1226762
  17. Yun et al., "A thin film active-lens with translational control for dynamically programmable optical zoom," Applied. Phys. Lett., vol. 107, no. 8, 2015, pp. 081907:1-5.