References
- B. Wang, R. Gan, and J. Zhang, Overview of electronic countermeasure operational effectiveness evaluation, Elec. Inform. Warfare Tech. 32 (2017), no. 4, 54-60.
- G. Averbuch et al., Extracting low signal‐to‐noise ratio events with the Hough transform from sparse array data, Geophys. 83 (2018) no. 3, 43-51.
- R. Zhao and Y. Rui, Micro‐Doppler feature extraction method under low signal‐to‐noise ratio, Inform. Tech. 35 (2017), no. 6, 148-154.
- F. Ning et al., A highly efficient compressed sensing algorithm for acoustic imaging in low signal‐to‐noise ratio environments, Mechanical Syst. Signal Proc. 112 (2018), no. 6, 113-128. https://doi.org/10.1016/j.ymssp.2018.04.028
- D. Donoho, Compressed sensing, IEEE Trans. Information Theory 52 (2006), no. 4, 1289-1306. https://doi.org/10.1109/TIT.2006.871582
- K. Jin, D. Lee, and J. Ye, A general framework for compressed sensing and parallel MRI using annihilating filter based low‐rank Hankel matrix, IEEE Trans. Comp. Imaging 2 (2016), no. 4, 480-495. https://doi.org/10.1109/TCI.2016.2601296
- M. Nouri, M. Mivehchy, and S. Aghdam, Adaptive time-frequency kernel local fisher discriminant analysis to distinguish range deception jamming, Int. Conf. Comput. Commun. Netw. Tech., Denton, TX, USA, 2016, pp. 1-5.
- Y. Lu et al., Jointing time‐frequency distribution and compressed sensing for countering smeared spectrum jamming, J. Electronic Inform. Tech. 38 (2016), no. 12, 3275-3281.
- J. Huang, T. Zhang, and D. Metaxas, Learning with structured sparsity, 26th Annu. Int. Conf. Machine Learn., Montreal, Canada, 2011, pp. 417-424.
- Z. Zhang, B. Rao, Extension of SBL algorithms for the recovery of block sparse signals with intra‐block correlation, IEEE Trans. Sig. Process. 61 (2013), no. 8, 2009-2015. https://doi.org/10.1109/TSP.2013.2241055
- J. Starck and E. Candes, Very high quality image restoration by combining wavelets and curvelets, Proc. SPIE ‐ Int. Soc. Opt. Eng. 4478 (2001), 9-19.
- J. Starck, M. Elad, and D. Donoho, Redundant multiscale transforms and their application for morphological component separation, Adv Imag. Elec. Phys. 132 (2004), no. 4, 287-348. https://doi.org/10.1016/S1076-5670(04)32006-9
- J. Bobin et al., Morphological component analysis: an adaptive thresholding strategy, IEEE Trans. Image Process. 16 (2007), no. 11, 2675-2681. https://doi.org/10.1109/TIP.2007.907073
- R. Fu, J. Li, and X. Gao, Static aurora images classification based on morphological component analysis, Acta Photonica Sinica 39 (2010), no. 6, 1034-1039. https://doi.org/10.3788/gzxb20103906.1034
- Y. Li, Y. Zhang, and X. Xu, Advances and perspective on morphological component analysis based on sparse representation, Acta Electron. Sinica 37 (2009), no. 1, 146-152. https://doi.org/10.3321/j.issn:0372-2112.2009.01.026
- R. Tao, B. Deng, and Y. Wang, Fractional Fourier Transform and Its Applications, Beijing, China, Tsinghua University Press, 2009, pp. 150-152.
- J. Starck, M. Elad, and D. Donoho, Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process. 14 (2005), no. 10, 1570-1582. https://doi.org/10.1109/TIP.2005.852206