DOI QR코드

DOI QR Code

Evaluation of a betavoltaic energy converter supporting scalable modular structure

  • Kang, Taewook (ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Jinjoo (Radioisotope Research Division, Atomic Energy Research Institute) ;
  • Park, Seongmo (ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Son, Kwangjae (Radioisotope Research Division, Atomic Energy Research Institute) ;
  • Park, Kyunghwan (ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lee, Jaejin (ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kang, Sungweon (ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Choi, Byoung-Gun (ICT Materials and Components Research Laboratory, Electronics and Telecommunications Research Institute)
  • Received : 2018.02.08
  • Accepted : 2018.08.01
  • Published : 2019.04.07

Abstract

Distinct from conventional energy-harvesting (EH) technologies, such as the use of photovoltaic, piezoelectric, and thermoelectric effects, betavoltaic energy conversion can consistently generate uniform electric power, independent of environmental variations, and provide a constant output of high DC voltage, even under conditions of ultra-low-power EH. It can also dramatically reduce the energy loss incurred in the processes of voltage boosting and regulation. This study realized betavoltaic cells comprised of p-i-n junctions based on silicon carbide, fabricated through a customized semiconductor recipe, and a Ni foil plated with a Ni-63 radioisotope. The betavoltaic energy converter (BEC) includes an array of 16 parallel-connected betavoltaic cells. Experimental results demonstrate that the series and parallel connections of two BECs result in an open-circuit voltage $V_{oc}$ of 3.06 V with a short-circuit current $I_{sc}$ of 48.5 nA, and a $V_{oc}$ of 1.50 V with an $I_{sc}$ of 92.6 nA, respectively. The capacitor charging efficiency in terms of the current generated from the two series-connected BECs was measured to be approximately 90.7%.

Keywords

References

  1. M. Dini et al., A nanocurrent power management IC for multiple heterogeneous energy harvesting sources, IEEE Trans. Power Electron. 30 (2015), no. 10, 5665-5680. https://doi.org/10.1109/TPEL.2014.2379622
  2. F. Reverter et al., Optimal inductor current in boost DC/DC converters regulating the input voltage applied to low‐power photovoltaic modules, IEEE Trans. Power Electron. 32 (2017), no. 8, 6188-6196. https://doi.org/10.1109/TPEL.2016.2619482
  3. J. P. Im et al., Transformer‐reuse reconfigurable synchronous boost converter with 20 mV MPPT‐input, 88% efficiency, and 37 mW maximum output power, ETRI J. 38 (2016), no. 4, 654-664. https://doi.org/10.4218/etrij.16.0116.0127
  4. T. W. Kang et al., An energy combiner for a multi‐input energyharvesting system, IEEE Trans. Circuits Syst. II Exp. Briefs 62 (2015), no. 9, 911-915. https://doi.org/10.1109/TCSII.2015.2435231
  5. K. S. Lee et al., Optimum design of dye‐sensitized solar module for building‐integrated photovoltaic systems, ETRI J. 39 (2017), no. 6, 859-865. https://doi.org/10.4218/etrij.2017-0088
  6. A. Romani et al., Micropower design of a fully autonomous energy harvesting circuit for arrays of piezoelectric transducers, IEEE Trans. Power Electron. 29 (2014), no. 2, 729-739. https://doi.org/10.1109/TPEL.2013.2257856
  7. A. Cvetkovic et al., Performance analysis of nonlinear energy‐ Harvesting DF relay system in interference‐limited Nakagami‐m fading environment, ETRI J. 39 (2017), no. 6, 803-812. https://doi.org/10.4218/etrij.2017-0096
  8. M. Dini et al., A nanocurrent power management IC for low‐voltage energy harvesting sources, IEEE Trans. Power Electron. 31 (2016), no. 6, 4292-4304. https://doi.org/10.1109/TPEL.2015.2472480
  9. J. Dixon et al., Evaluation of a silicon $^{90}Sr$ betavoltaic power source, Sci. Rep. 6 (2016), 38182:1-38182:6.
  10. R. Bao et al., Betavoltaic performance of radiation‐hardened high‐efficiency Si space solar cells, IEEE Trans. Electron Devices 59 (2012), no. 5, 1286-1294. https://doi.org/10.1109/TED.2012.2187059
  11. T. R. Alam et al., Principles of betavoltaic battery design, J. Energy Power Sources 3 (2016), no. 1, 11-41.
  12. A. Sharma et al., Betavoltaic cells using P3HT semiconductive conjugated polymer, IEEE Trans. Electron Devices 62 (2015), no. 7, 2320-2326. https://doi.org/10.1109/TED.2015.2434852
  13. K. Bourzac, A 25-Year Battery. MIT Technology Review, November 17, 2009, available at http://www.technolog-yreview.com/news/416312/a-25-year-battery/ (accessed May 22, 2014).
  14. J. Nelson, The physics of solar cells, Imperial College Press, London, UK, 2003.
  15. G. Zuo et al., A simple theoretical model for $^{63}Ni$ betavoltaic battery, Appl. Radiation Isotopes 82 (2013), 119-125. https://doi.org/10.1016/j.apradiso.2013.07.026
  16. M. Prelas et al., Nuclear batteries and radioisotopes, Springer International Publishing, Switzerland, 2016.
  17. C. J. Eiting et al., Demonstration of a radiation resistant, high efficiency SiC betavoltaic, Appl. Phys. Lett. 88 (2006), no. 6, 64101:1-64101:3.
  18. C. Y. Wang et al., Lithium‐ion battery structure that self‐heats at low temperatures, Nature 529 (2016), 515-518. https://doi.org/10.1038/nature16502
  19. G. Yu et al., Properties of advanced semiconductor materials GaN, AlN, SiC, BN, SiC, SiGe, Wiley & Sons, Inc., New York, USA, 2001, 93-148.
  20. H. Guo et al., Fabrication of SiC p-i-n betavoltaic cell with 63ni irradiation source, IEEE Int. Conf. Devices Solid-State Circuits., Tianjin, China, Nov. 17-18, 2011, pp. 1-2.
  21. M. V. S. Chandrashekhar et al., Demonstration of a 4H SiC betavoltaic cell, Appl. Phys. Lett. 88 (2006), no. 3, 033506:1-033506:3.
  22. A. Sciuto et al., Interdigit 4H‐SiC vertical Schottky diode for betavoltaic applications, IEEE Trans. Electron Devices 58 (2011), no. 3, 593-599. https://doi.org/10.1109/TED.2010.2094622
  23. Y. R. Uhm et al., Study of a betavoltaic battery using electroplated nickel‐63 on nickel foil as a power source, Nucl. Eng. Technol. 48 (2016), 773-777. https://doi.org/10.1016/j.net.2016.01.010
  24. J. Kim et al., Fabrication of $^{63}Ni$ layer for betavoltaic battery, in Proc. Int. Conf. Nanotechnology, Rome, Italy, July 27-30, 2015, pp. 304-307.
  25. J. Kim et al., Performance evaluation of Ni-63 betavoltaic battery, in Proc. Korean Nuclear Society Spring Meeting, Jeju, Rep. of Korea, May. 2017, pp. 1-2.
  26. Graetz. CoMo 170. Accessed: Jan. 12, 2018. [Online]. Available: http://www.graetz.com/como-170+M52087573ab0.html
  27. C. Honsberg et al., GaN betavoltaic energy converters, in Thirty-First IEEE Photovoltaic Specialists Conf., Lake Buena Vista, FL, USA, Jan. 3-7, 2005, pp. 102-105.

Cited by

  1. Self-Powered Autonomous Wireless Sensor Node by Using Silicon-Based 3D Thermoelectric Energy Generator for Environmental Monitoring Application vol.13, pp.3, 2020, https://doi.org/10.3390/en13030674
  2. Efficient hardware implementation and analysis of true random-number generator based on beta source vol.42, pp.4, 2019, https://doi.org/10.4218/etrij.2020-0083
  3. Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction vol.117, pp.10, 2019, https://doi.org/10.1063/5.0020135
  4. A lightweight true random number generator using beta radiation for IoT applications vol.42, pp.6, 2019, https://doi.org/10.4218/etrij.2020-0119