DOI QR코드

DOI QR Code

무인 비행체의 환경 인지 및 경로 계획 연구동향

Research Trends on Environmental Perception and Motion Planning for Unmanned Aerial Vehicles

  • 발행 : 2019.06.01

초록

Currently, the use of unmanned aerial vehicles (UAVs) is spreading from recreational purposes to the public- and commercial-use product areas. Various efforts are being made worldwide to ensure the safety of UAVs and expand their service applications and convenience, because autonomous flights are becoming increasingly popular. In order for a UAV to perform autonomous flight and mission without operator assistance, environmental perception technology, path planning technology, and flight control technology are needed. In this article, we present recent trends in these technologies.

키워드

HJTOCM_2019_v34n3_43_f0001.png 이미지

그림 1 무인 비행체의 자율 비행을 위한 환경 인지 및 경로 계획 구성도

HJTOCM_2019_v34n3_43_f0002.png 이미지

그림 2 SLAM 기반 환경 지도 형태[1]: (a, c) 3차원 포인트 클라우드 맵, (b) occupancy grid 맵

HJTOCM_2019_v34n3_43_f0003.png 이미지

그림 3 경로점 기반 path planning(왼쪽)과 corridor 기반 path planning(오른쪽)

참고문헌

  1. C. Kanellakis, G. Nikolakopoulos, "Survey on Computer Vision for UAVs: Current Developments and Trends," J. Intell. Robot. Syst., vol. 87, no. 1, 2017, pp. 141-168. https://doi.org/10.1007/s10846-017-0483-z
  2. J. R. Braga et al., "An Image Matching System for Autonomous UAV Navigation based on Neural Network," in Proc. Int. Conf. Contr., Automation, Robot. Vis. (ICARCV), Phuket, Thailand, Nov. 2016, pp. 1-6.
  3. M. Sanfourche et al., "Perception for UAV: Vision-based Navigation and Environment Modeling," AerospaceLab, vol. 4, 2012, pp. 1-19.
  4. A. Nassar et al., "A Deep CNN-Based Framework For Enhanced Aerial Imagery Registration with Applications to UAV Geolocalization," in Proc. IEEE Conf. Comput. Vis. Pattern Recogn. Workshops, Salt Lake City, UT, USA, June 2018.
  5. Y. Lu et al., "A Survey on Vision-based UAV Navigation," Geo Spat. Inf. Sci., vol. 21, no. 1, 2018, pp. 21-32. https://doi.org/10.1080/10095020.2017.1420509
  6. A. Al-Kaff et al., "Monocular Vision-based Obstacle Detection/Avoidance for Unmanned Aerial Vehicles," in Proc. IEEE Intell. Veh. Symp. (IV), Gothenburg, Sweden, June 2016, pp. 92-97.
  7. J. Maier, M. Humenberger, "Movement Detection based on Dense Optical Flow for Unmanned Aerial Vehicles," Int. J. Adv. Robot. Syst., vol. 1, no. 2, 2013, pp. 1-11.
  8. O. Esrafilian, H. D. Taghirad, "Autonomous Flight and Obstacle Avoidance of a Quadrotor by Monocular SLAM," in Proc. Int. Conf. Robot. Mechatron. (ICROM), Tehran, Iran, Oct. 26-28. 2016, pp. 240-245.
  9. G. Klein, D. Murray, "Parallel Tracking and Mapping for Small AR Workspaces," in Proc. IEEE ACM Int. Symp. Mix. Augment. Real., Nara, Japan, Nov. 2007, pp. 225-234.
  10. D. Magree, E. N. Johnson, "Combined Laser and Vision-aided Inertial Navigation for an Indoor Unmanned Aerial Vehicle," in Proc. Am. Contr. Conf., Portland, OR, USA, June 2014, pp. 1900-1905.
  11. N. Smolyanskiy et al., "Toward Low-flying Autonomous MAV Trail Navigation Using Deep Neural Networks for Environmental Awareness," in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), Vancouver, Canada, Sept. 2017, pp. 4241-4247.
  12. T. Ayoul, et al., "UAV Navigation above Roads Using Convolutional Neural Networks," Technical Report, Stanford University, 2017.
  13. S. Liu et al., "Search-Based Motion Planning for Quadrotors Using Linear Quadratic Minimum Time Control," in IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), Vancouver, Canada, Sept. 2017, pp. 2872-2879.
  14. S. Koenig, L. Maxim, "Fast Replanning for Navigation in Unknown Terrain," IEEE Trans. Robot., vol. 21, no. 3, 2005, pp. 354-363. https://doi.org/10.1109/TRO.2004.838026
  15. S. Grzonka et al., "A Fully Autonomous Indoor Quadrotor," IEEE Trans. Robot., vol. 28, no. 1, 2012, pp. 90-100. https://doi.org/10.1109/TRO.2011.2162999
  16. S. M. LaValle, "Rapidly-Exploring Random Trees: A New Tool for Path Planning," 1998.
  17. S. Karaman, F. Emilio, "Sampling-Based Algorithms for Optimal Motion Planning," Int. J. Robot. Res., vol. 30, no. 7, 2011, pp. 846-894. https://doi.org/10.1177/0278364911406761
  18. D. Mellinger, K. Vijay, "Minimum Snap Trajectory Generation and Control for Quadrotors," in IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011, pp. 2520-2525.
  19. S. Tang, K. Vijay, "Mixed Integer Quadratic Program Trajectory Generation for a Quadrotor with a Cable-Suspended Payload," in IEEE Int. Conf. Robot. Autom. (ICRA), Seattle, WA, USA, May 2015, pp. 2216-2222.
  20. R. Deits,T. Russ, "Efficient Mixed-Integer Planning for UAVs in Cluttered Environments," in IEEE Int. Conf. Robot. Autom. (ICRA), Seattle, WA, USA, May 2015, pp. 42-49.
  21. C. Richter et al., "Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments," in Robotics Research, Springer, 2016, pp. 649-666.
  22. D. Mellinger et al., "Mixed-Integer Quadratic Program Trajectory Generation for Heterogeneous Quadrotor teams," in IEEE Int. Conf. Robot. Autom., Saint Paul, MN, USA, May 2012, pp. 477-483.
  23. J. Chen et al., "Online Generation of Collision-Free Trajectories for Quadrotor Flight in Unknown Cluttered Environments," in IEEE Int. Conf. Robot. Autom. (ICRA), Stockholm, Sweden, May 2016, pp. 1476-1483.
  24. R. Allen, P. Marco, "A Real-Time Framework for Kinodynamic Planning with Application to Quadrotor Obstacle Avoidance," in AIAA Guid. Navig. Control Conf., San Diego, CA, USA, Jan. 2016, pp. 1-18.
  25. F. Gao et al., "Flying on Point Clouds: Online Trajectory Generation and Autonomous Navigation for Quadrotors in Cluttered Environments," J. Field Robot., vol. 30, no. 7, 2011, pp. 846-894.