References
- M. K. Kim, Principles and techniques of digital holographic microscopy, SPIE Rev. 1 (2010), no. 1, 018005.
- B. Kemper and G. von Bally, Digital holographic microscopy for live cell applications and technical inspection, Appli.Opt. 47 (2008), no. 4, A52-A61. https://doi.org/10.1364/AO.47.000A52
- S. Al-Janabi, A. Huisman, and P. J. Van Diest, Digital pathology: current status and future perspectives, Histopathology 61 (2012), no. 1, 1-9.
- O. Ordi et al., Virtual microscopy in the undergraduate teaching of pathology, J. Pathol. Inform. 6 (2015), 1. https://doi.org/10.4103/2153-3539.150246
- A. Greenbaum et al., Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy, Sci. Rep. 3 (2013), 1717. https://doi.org/10.1038/srep01717
- G. Zheng et al., Sub-pixel resolving optofluidic microscope for on-chip cell imaging, Lab Chip 10 (2010), no. 22, 3125-3129. https://doi.org/10.1039/c0lc00213e
- J. M. Rodenburg and R. H. T. Bates, The theory of superresolution electron microscopy via wigner-distribution deconvolution, Phil. Trans. R. Soc. Lond. A 339 (1992), no. 1655, 521-553. https://doi.org/10.1098/rsta.1992.0050
- G. Zheng, R. Horstmeyer, and C. Yang, Wide-field, high-resolution fourier ptychographic microscopy, Nat. Photonics 7 (2013), no. 9, 739. https://doi.org/10.1038/nphoton.2013.187
- Philips intellisite ultra fast scanner, available at https://www.philips.co.uk/healthcare/product/hcnoctn442/intellisite-ultra-fast-scanner.
- P. L. Makowski et al., Synthetic aperture fourier holography for wide-angle holographic display of real scenes, Appl. Opt. 54 (2015), no. 12, 3658-3665. https://doi.org/10.1364/AO.54.003658
- P. Sidorenko and O. Cohen Single-shot ptychography, Optica 3 (2016), no. 1, 9-14. https://doi.org/10.1364/OPTICA.3.000009
- W. Zhou et al., Study on phase stitching technique on digital holography, Digital Holography and Three-Dimensional Imaging, Optical Society of America, 2009, pp. DWB23.
- Y. Wen et al., Further investigation on the phase stitching and system errors in digital holography, Appl. Opt. 54 (2015), no. 2, 266-276. https://doi.org/10.1364/AO.54.000266
- S. Preibisch, S. Saalfeld, and P. Tomancak, Globally optimal stitching of tiled 3d microscopic image acquisitions, Bioinformatics 25 (2009), no. 11, 1463-1465. https://doi.org/10.1093/bioinformatics/btp184
- M. Takeda, H. Ina, and S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Ame. 72 (1982), no. 1, 156-160. https://doi.org/10.1364/JOSA.72.000156
- M. A. Herraez et al., Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path, Appl. Opt. 41 (2002), no. 35, 7437-7444. https://doi.org/10.1364/AO.41.007437
- P. Stępien et al., Multi-modal quantitative analysis of hela cells using digital holographic microscopy and confocal laser scanning microscopy, Int. Conf. Speckle Metrology, Janow Podlaski, Poland, Sept. 10-12, 2018, pp. 108341V:1-7.
- P. Ferraro et al., Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging, Appl. Opt. 42 (2003), no. 11, 1938-1946. https://doi.org/10.1364/AO.42.001938
- Y. Liu, Z. Wang, and J. Huang, Recent progress on aberration compensation and coherent noise suppression in digital holography, Appl. Sci. 8 (2018), no. 3, 444. https://doi.org/10.3390/app8030444
- J. Di et al., Phase aberration compensation of digital holographic microscopy based on least squares surface fitting, Optics Commun. 282 (2009), no. 19, 3873-3877. https://doi.org/10.1016/j.optcom.2009.06.049
- C. Zuo et al., Phase aberration compensation in digital holographic microscopy based on principal component analysis, Opt. Lett. 38 (2013), no. 10, 1724-1726. https://doi.org/10.1364/OL.38.001724
- M. Trusiak, M. Wielgus, and K. Patorski, Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition, Opt. Lasers Eng. 52 (2014), 230-240. https://doi.org/10.1016/j.optlaseng.2013.06.003
- Z. Wang et al., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13 (2004), no. 4, 600-612. https://doi.org/10.1109/TIP.2003.819861
Cited by
- Aberration-corrected holographic projection on a two-dimensionally highly tilted spatial light modulator vol.27, pp.14, 2019, https://doi.org/10.1364/oe.27.019270
- Spatial bandwidth-optimized compression of image plane off-axis holograms with image and video codecs vol.28, pp.19, 2019, https://doi.org/10.1364/oe.398598
- Wide area quantitative phase microscopy by spatial phase scanning digital holography vol.45, pp.3, 2019, https://doi.org/10.1364/ol.385322
- Preprocessing methods for quantitative phase image stitching vol.13, pp.1, 2022, https://doi.org/10.1364/boe.439045