DOI QR코드

DOI QR Code

Recent advances in metasurface hologram technologies

  • Lee, Gun-Yeal (School of Electrical and Computer Engineering, Seoul National University) ;
  • Sung, Jangwoon (School of Electrical and Computer Engineering, Seoul National University) ;
  • Lee, Byoungho (School of Electrical and Computer Engineering, Seoul National University)
  • Received : 2018.09.25
  • Accepted : 2018.12.11
  • Published : 2019.02.12

Abstract

Since Leith and Upatnieks demonstrated the first optical hologram in 1964, hologram technology has attracted a great deal of interest in a wide range of optical fields owing to its potential use in future optical applications such as holographic imaging and optical data storage. Although there have been considerable efforts to develop holographic technologies using conventional optics, critical issues still hinder future development. Recently, metasurfaces composed of artificially fabricated subwavelength structures have been considered as novel holographic devices that show an unprecedented ability to control electromagnetic waves. In this review, we outline the recent progress in metasurface holography. A general introduction to several types of metasurface holography categorized based on their physics and application is provided. Then, our personal perspective on the future of this field is discussed.

Keywords

References

  1. P.-A. Blanche et al., Holographic three-dimensional telepresence using large-area photorefractive polymer, Nature 468 (2010), 80-83. https://doi.org/10.1038/nature09521
  2. J. Geng, Three-dimensional display technologies, Adv. Opt. Photon. 5 (2013), no. 4, 456-535. https://doi.org/10.1364/AOP.5.000456
  3. B. Lee, Three-dimensional displays, past and present, Phys. Today 66 (2013), no. 4, 33-41. https://doi.org/10.1063/PT.3.1915
  4. J. B. Pendry et al., Controlling electromagnetic fields, Science 312 (2006), no. 5781, 1780-1782. https://doi.org/10.1126/science.1125907
  5. N. Yu et al., Flat optics with designer metasurfaces, Nat. Mater. 13 (2014), 139-150. https://doi.org/10.1038/nmat3839
  6. N. Meinzer et al., Plasmonic meta-atoms and metasurfaces, Nat. Photon. 8 (2014), 889-898. https://doi.org/10.1038/nphoton.2014.247
  7. A. I. Kuznetsov et al., Optically resonant dielectric nanostructures, Science 354 (2016), no. 6314, aag2472.
  8. S. Jahani et al., All-dielectric metamaterials, Nat. Nanotechnol. 11 (2016), 23-36. https://doi.org/10.1038/nnano.2015.304
  9. D. R. Smith et al., Metamaterials and negative refractive index, Science 305 (2004), no. 5685, 788-792. https://doi.org/10.1126/science.1096796
  10. V. M. Shalaev, Optical negative-index metamaterials, Nat. Photon. 1 (2007), 41-48. https://doi.org/10.1038/nphoton.2006.49
  11. K. O'Brien et al., Predicting nonlinear properties of metamaterials from the linear response, Nat. Mater. 14 (2015), 379-383. https://doi.org/10.1038/nmat4214
  12. G. Li et al., Continuous control of the nonlinearity phase for harmonic generations, Nat. Mater. 14 (2015), 607-612. https://doi.org/10.1038/nmat4267
  13. X. Ni et al., An ultrathin invisibility skin cloak for visible light, Science 18 (2015), no. 6254, 1310-1314.
  14. N. Yu et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 21 (2011), no. 6054, 333-337.
  15. D. Lin et al., Dielectric gradient metasurface optical elements, Science 345 (2014), 298-302. https://doi.org/10.1126/science.1253213
  16. P. Genevet et al., Holographic optical metasurfaces: a review of current progress, Rep. Prog. Phys. 78 (2015), 024401. https://doi.org/10.1088/0034-4885/78/2/024401
  17. M. I. Shalaev et al., High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode, Nano Lett. 15 (2015), 6261-6266. https://doi.org/10.1021/acs.nanolett.5b02926
  18. J. Jin et al., Nanostructured holograms for broadband manipulation of vector beams, Nano Lett. 13 (2013), 4269-4274. https://doi.org/10.1021/nl402039y
  19. P. Genevet et al., Recent advances in planar optics: from plasmonic to dielectric metasurfaces, Optica 4 (2017), no. 1, 139e152. https://doi.org/10.1364/OPTICA.4.000139
  20. H.-H. Hsiao et al., Fundamentals and applications of metasurfaces, Small Methods 1 (2017), 1600064. https://doi.org/10.1002/smtd.201600064
  21. L. Huang et al., Metasurface holography: from fundamentals to applications, Nanophoton. 7 (2018), no. 6, 1169-1190. https://doi.org/10.1515/nanoph-2017-0118
  22. L. Huang et al., Dispersionless phase discontinuities for controlling light propagation, Nano Lett. 12 (2012), no. 11, 5750-5755. https://doi.org/10.1021/nl303031j
  23. A. Arbabi et al., Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays, Nat. Commun. 6 (2015), 7069. https://doi.org/10.1038/ncomms8069
  24. M. Decker et al., High-efficiency dielectric Huygens' surfaces, Adv. Opt. Mater. 3 (2015), 813-820. https://doi.org/10.1002/adom.201400584
  25. K. E. Chong et al., Efficient polarization-insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms, ACS Photon. 3 (2016), no. 4, 514-519. https://doi.org/10.1021/acsphotonics.5b00678
  26. X. Ni et al., Metasurface holograms for visible light, Nat. Commun. 4 (2015), 2807. https://doi.org/10.1038/ncomms3807
  27. L. Huang et al., Three-dimensional optical holography using a plasmonic metasurface, Nat. Commun. 4 (2013), 2808. https://doi.org/10.1038/ncomms3808
  28. G. Zheng et al., Metasurface holograms reaching 80% efficiency, Nat. Nanotechnol. 10 (2015), 308-312. https://doi.org/10.1038/nnano.2015.2
  29. M. Khorasaninejad et al., Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, Science 352 (2016), no. 6290, 1190-1194. https://doi.org/10.1126/science.aaf6644
  30. B. H. Chen et al., GaN metalens for pixel-level full-color routing at visible light, Nano Lett. 17 (2017), no. 10, 6345-6352. https://doi.org/10.1021/acs.nanolett.7b03135
  31. E. Arbabi et al., MEMS-tunable dielectric metasurface lens, Nat. Commun. 9 (2018), 812. https://doi.org/10.1038/s41467-018-03155-6
  32. L. Liu et al., Broadband metasurfaces with simultaneous control of phase and amplitude, Adv. Mater. 26 (2014), 5031-5036. https://doi.org/10.1002/adma.201401484
  33. E.-Y. Song et al., Compact generation of airy beams with Caperture metasurface, Adv. Opt. Mater. 5 (2017), 1601028. https://doi.org/10.1002/adom.201601028
  34. G.-Y. Lee et al., Complete amplitude and phase control of light using broadband holographic metasurfaces, Nanoscale 10 (2018), 4237-4245. https://doi.org/10.1039/C7NR07154J
  35. Y.-W. Huang et al., Aluminum plasmonic multicolor meta-hologram, Nano Lett. 15 (2015), no. 5, 3122-3127. https://doi.org/10.1021/acs.nanolett.5b00184
  36. W. Wan et al., Full-color plasmonic metasurface holograms, ACS Nano 10 (2016), no. 12, 10671-10680. https://doi.org/10.1021/acsnano.6b05453
  37. X. Li et al., Multicolor 3D meta-holography by broadband plasmonic modulation, Sci. Adv. 2 (2016), e1601102. https://doi.org/10.1126/sciadv.1601102
  38. B. Wang et al., Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms, Nano Lett. 16 (2016), no. 8, 5235-5240. https://doi.org/10.1021/acs.nanolett.6b02326
  39. W. T. Chen et al., High-efficiency broadband meta-hologram with polarization-controlled dual images, Nano Lett. 14 (2013), 225-230. https://doi.org/10.1021/nl403811d
  40. A. Arbabi et al., Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nat. Nanotechnol. 10 (2015), 937-943. https://doi.org/10.1038/nnano.2015.186
  41. J. P. B. Mueller et al., Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization, Phys. Rev. Lett. 118 (2017), no. 5, 113901. https://doi.org/10.1103/PhysRevLett.118.113901
  42. M. Khorasaninejad et al., Broadband and chiral binary dielectric meta-holograms, Sci. Adv. 13 (2016), no. 5, e1501258. https://doi.org/10.1126/sciadv.1501258
  43. D. Wen et al., Helicity multiplexed broadband metasurface holograms, Nat. Commun. 6 (2015), 8241. https://doi.org/10.1038/ncomms9241
  44. W. Ye et al., Spin and wavelength multiplexed nonlinear metasurface holography, Nat. Commun. 7 (2016), 11930. https://doi.org/10.1038/ncomms11930
  45. L. Li et al., Electromagnetic reprogrammable coding-metasurface holograms, Nat. Commun. 8 (2017), 197. https://doi.org/10.1038/s41467-017-00164-9
  46. S.-Y. Lee et al., Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material, Sci. Rep. 7 (2017), 41152. https://doi.org/10.1038/srep41152
  47. Q. Wang et al., Optically reconfigurable metasurfaces and photonic devices based on phase change materials, Nat. Photon. 10 (2015), 60-65. https://doi.org/10.1038/nphoton.2015.247
  48. X. Yin et al., Beam switching and bifocal zoom lensing using active plasmonic metasurfaces, Light Sci. Appl. 6 (2017), e17016. https://doi.org/10.1038/lsa.2017.16
  49. J. Li et al., Addressable metasurfaces for dynamic holography and optical information encryption, Sci. Adv. 4 (2018), eaar6768. https://doi.org/10.1126/sciadv.aar6768
  50. W. T. Chen et al., A broadband achromatic metalens for focusing and imaging in the visible, Nat. Nanotechnol. 13 (2018), 220-226. https://doi.org/10.1038/s41565-017-0034-6
  51. S. Wang et al., A broadband chromatic metalens in the visible, Nat. Nanotechnol. 13 (2018), 227-232. https://doi.org/10.1038/s41565-017-0052-4
  52. E. Arbabi et al., Two-photon microscopy with a double-wavelength metasurface objective lens, Nano Lett. 18 (2018), 4943-4948. https://doi.org/10.1021/acs.nanolett.8b01737
  53. A. Arbabi et al., Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations, Nat. Commun. 7 (2016), 13682. https://doi.org/10.1038/ncomms13682
  54. M. Faraji-Dana et al., Compact folded metasurface spectrometer, Nat. Commun. 9 (2018), 4196. https://doi.org/10.1038/s41467-018-06495-5
  55. H. Pahlevaninezhad et al., Nano-optic endoscope for high-resolution optical coherence tomography in vivo, Nat. Photon. 12 (2018), 540-547. https://doi.org/10.1038/s41566-018-0224-2
  56. R. Zhao et al., Multichannel vectorial holographic display and encryption, Light Sci. Appl. 7 (2018), 95. https://doi.org/10.1038/s41377-018-0091-0
  57. G.-Y. Lee et al., Metasurface eyepiece for augmented reality, Nat. Commun. 9 (2018), 4562. https://doi.org/10.1038/s41467-018-07011-5

Cited by

  1. When metasurface meets hologram: principle and advances vol.11, pp.3, 2019, https://doi.org/10.1364/aop.11.000518
  2. Progresses in the practical metasurface for holography and lens vol.8, pp.10, 2019, https://doi.org/10.1515/nanoph-2019-0203
  3. Metasurface holographic movie: a cinematographic approach vol.28, pp.16, 2019, https://doi.org/10.1364/oe.399369
  4. Metasurface optics for imaging applications vol.45, pp.3, 2019, https://doi.org/10.1557/mrs.2020.64
  5. Ultra-broadband metasurface holography via quasi-continuous nano-slits vol.53, pp.10, 2019, https://doi.org/10.1088/1361-6463/ab5e44
  6. Perimeter-Control Architecture for Optical Phased Arrays and Metasurfaces vol.14, pp.2, 2020, https://doi.org/10.1103/physrevapplied.14.024038
  7. Engineering of the Second‐Harmonic Emission Directionality with III-V Semiconductor Rod Nanoantennas vol.14, pp.9, 2020, https://doi.org/10.1002/lpor.202000028
  8. Geometrical Phase Optical Components: Measuring Geometric Phase without Interferometry vol.10, pp.10, 2019, https://doi.org/10.3390/cryst10100880
  9. Fabrication of Bilayer Dichroic Films Using Liquid Crystal Materials for Multiplex Applications vol.12, pp.40, 2019, https://doi.org/10.1021/acsami.0c13663
  10. Recent advances in multi-dimensional metasurfaces holographic technologies vol.1, pp.1, 2019, https://doi.org/10.1186/s43074-020-00020-y
  11. Recent advances in optical dynamic meta-holography vol.4, pp.11, 2019, https://doi.org/10.29026/oea.2021.210030
  12. All-Dielectric Metasurface-Based Beam Splitter with Arbitrary Splitting Ratio vol.11, pp.5, 2019, https://doi.org/10.3390/nano11051137
  13. Geometric and physical configurations of meta‐atoms for advanced metasurface holography vol.3, pp.7, 2019, https://doi.org/10.1002/inf2.12191
  14. Independent Multichannel Wavefront Modulation for Angle Multiplexed Meta‐Holograms vol.9, pp.17, 2019, https://doi.org/10.1002/adom.202100678
  15. Suppressing meta-holographic artifacts by laser coherence tuning vol.10, pp.1, 2021, https://doi.org/10.1038/s41377-021-00547-0
  16. Porous SiO2 coated dielectric metasurface with consistent performance independent of environmental conditions vol.12, pp.1, 2019, https://doi.org/10.1364/ome.444264