(그림 1) 초분광 이미징 데이터 습득형태 (a) Point- scan (b) Line-scan (c) Area-scan (d) snapshot
(그림 2) 초분광 이미징 시스템의 예
(그림 3) 초분광 이미징 분석절차
(그림 4) 토지의 Fe과 Zn의 분포도
(그림 5) HSI를 이용하여 분류한 사과의 상태 분류
<표 1> 초분광 이미징 사용대역
<표 2> 밴드수에 따른 분광 기술
References
- A.F.H. Goetz et al., "Imaging Spectrometry for Earth Remote Sensing," Sci., vol. 228, no. 4704, 1985, pp. 1147-1153. https://doi.org/10.1126/science.228.4704.1147
- A.F.H. Goetz, "Three Decades of Hyperspectral Remote Sensing of the Earth: a Personal View," Remote Sens. Environment, vol. 113, no. 1, 2009, pp. S5-S16. https://doi.org/10.1016/j.rse.2007.12.014
- Technavio, "Global Hyperspectral Imaging Market(2016-2020)," Technavio, 2016.
- G. Lu and B. Fei. "Medical Hyperspectral Imaging: a Review," J. Biomedical Opt., vol. 19, no. 1, 2014, pp. 010901:1-010901:24.
- J.R. Gilchrist, "Hyperspectral Imaging Spectroscopy: A Look at RealLife Applications," Phtonics Media, 2018.
- R. Hruska et al., "Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle," Remote Sens., vol. 4, no. 9, 2012, pp. 2736-2752. https://doi.org/10.3390/rs4092736
- T.W. Sawyer, AS. Luthman, and S.E Bohndiek, "Evaluation of Illumination System Uniformity for Wide-Field Biomedical Hyperspectral Imaging," J. Opt., vol. 19, no. 4, 2017, pp. 045301:1-045301:10.
- M. Aikio, "Hyperspectral Prism-Grating-Prism Imaging Spectrograph," in VTT Pubrications 435, Technical Research Centre of Finland, Olul, Finland, 2001.
- D.-W. Sun, "Hyperspectral Imaging for Food Quality Analysis and Control," Academic Press Inc., London, UK, 2010.
- K. Degraux et al., "Multispectral Compressive Imaging Strategies Using Fabry-Perot Filtered Sensors," arXiv: 1802.02040v1, 2018.
- N. Hagen et al., "Review of Snapshot Spectral Imaging Technologies," Opt. Eng., vol. 52, no. 9, 2013, pp. 090901:1-090901:23.
- R. Abdlaty et al., "Hyperspectral Imaging: Comparison of Acousto-Optic and Liquid Crystal Tunable Filters," Proc. SPIE, vol. 10573, 2018, pp. 105732P:1-105732P:9.
- L. Bei et al., "Acousto-Optic Tunable Filters: Fundamentals and Applications as Applied to Chemical Analysis Techniques," Progress Quantum Electron., vol. 28, no. 2, 2004, pp. 67-87. https://doi.org/10.1016/S0079-6727(03)00083-1
- A. Plaza et al. "Recent Advances in Techniques for Hyperspectral Image Processing," Remote Sens. Environment, vol. 113, sup. 1, pp. S110-S122. https://doi.org/10.1016/j.rse.2007.07.028
- P. Ghamisi et al., "Advances in Hyperspectral Image and Signal Processing: a Comprehensive Overview of the State of the Art," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, 2017, pp. 37-78. https://doi.org/10.1109/MGRS.2017.2762087
- R. Heylen, M. Parente, and P. Gader, "A Review of Nonlinear Hyperspectral Unmixing Methods," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, 2014, pp. 1844-1868. https://doi.org/10.1109/JSTARS.2014.2320576
- U. B. Gewali1, S. T. Monteiro, and E. Saber, "Machine Learning Based Hyperspectral Image Analysis: A Survey," arXiv: 1802.08701, 2018.
- R. Ablin and C. H. Sulochana, "A Survey of Hyperspectral Image Classification in Remote Sensing." Int. J. Adv. Research Comput. Commun. Eng., vol. 2, no. 8, 2013, pp. 2986-3000.
- A. Setiyoko, I.G.W.S. Dharma, and T. Haryanto, "Recent Development of Feature Extraction and Classification Multispectral/Hyperspectral Images: A Systematic Literature Review," J. Phys.: Conf. Series, vol. 801, no. 1, 2017, pp. 012045:1-012045:6.
- H. Su, Q. Du, and P. Du, "Hyperspectral Image Visualization Using Band Selection," IEEE J. Selected Topics Appli. Earth Observ. Remote Sens., vol. 7, no. 6, 2014, pp. 2647-2658. https://doi.org/10.1109/JSTARS.2013.2272654
- S. Sanjith and R. Ganesan, "A Review on Hyperspectral Image Compression," Int. Conf. Contr., Instrument., Commun. Computational Technol. (ICCICCT), Kanyakumari, India, 2014, pp. 1159-1163.
- P. Ghamisi et al., "New Frontiers in Spectral-Spatial Hyperspectral Image Classification: The Latest Advances Based on Mathematical Morphology, Markov Random Fields, Segmentation, Sparse Representation, and Deep Learning ," IEEE Geosci. Remote Sens. Mag., vol. 6, no. 3, 2018, pp. 10-43. https://doi.org/10.1109/mgrs.2018.2854840
- L. He et al., "Recent Advances on Spectral-Spatial Hyperspectral Image Classification: An Overview and New Guidelines," IEEE Trans. Geosci. Rem. Sens., vol. 56, no. 3, 2018, pp. 1579-1597. https://doi.org/10.1109/TGRS.2017.2765364
- L. Mou et al., "Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery," 2018. https://arxiv.org/abs/1803.02642. https://doi.org/10.1109/TGRS.2018.2863224
- X. Zhu et al., "Deep Learning in Remote Sensing," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, 2017, pp. 8-36. https://doi.org/10.1109/MGRS.2017.2762307
- X. Zhong et al., "Hyperspectral Unmixing via Deep Convolutional Neural Networks," IEEE Geosci. Remote Sens. Lett., vol. 15, no. 11, 2018, pp. 1-5. https://doi.org/10.1109/LGRS.2017.2781679
- Z. He et al., "Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification," Remote Sens., vol. 9, 2017, pp. 1042:1-1042:27.
- L. Ziu et al., "Generative Adversarial Networks for Hyperspectral Image Classification," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 9, 2018, pp. 5046-5063. https://doi.org/10.1109/TGRS.2018.2805286
- M. J. Khan et al., "Modern Trends in Hyperspectral Image Analysis: A Review," IEEE Access, vol. 6, 2018, pp. 14118-14129. https://doi.org/10.1109/ACCESS.2018.2812999
- P. Baeck et al., "High Resolution Vegetation Mapping with a Novel Compact Hyperspectral Camera System," in Int. Soc. Precision Agriculture, St. Louis, MO, USA, 2016, pp. 1-12.
- M. Denk et al., "Mapping of Iron and Steelwork By-Products Using Close Range Hyperspectral Imaging: A Case Study in Thuringia, Germany," Eur. J. Remote Sens., vol. 48, no. 1, 2015, pp. 489-509. https://doi.org/10.5721/EuJRS20154828
- M. Vohland et al., "Quantification of Soil Properties with Hyperspectral Data: Selecting Spectral Variables with Different Methods to Improve Accuracies and Analyze Prediction Mechanisms," Remote Sens., vol. 9, no. 11, 2017, pp. 1103:1-1103:24.
- HySpex, https://www.hyspex.no/hyperspectral_imaging/
- J. Transon et al., "Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context," Remote Sens., Vol. 10, no. 2, 2018, pp. 157:1-157:32. https://doi.org/10.3390/rs10101571
- R. Zhao et al., "Hyperspectral Anomaly Detection via a Sparsity Score Estimation Framework," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 6, 2017, pp. 3208-3222. https://doi.org/10.1109/TGRS.2017.2664658
- M.-A. Gagnon et al., "Airborne Thermal Infrared Hyperspectral Imaging of Buried Objects," Proc. SPIE, vol. 9454, 2015, pp. 94540K:1-94540K:10.
- Y. Liu et al., "Hyperspectral Imaging Technique for Evaluating Food Quality and Safety During Various Processes: A Review of Recent Applications," Trens. Food Sci. Technol., vol. 69, 2017, pp. 25-35. https://doi.org/10.1016/j.tifs.2017.08.013
- S. Jarolmasjed et al., "Hyperspectral Imaging and Spectrometry-Derived Spectral Features for Bitter Pit Detection in Storage Apples," Sensers, vol. 18, no. 5, 2018, pp. 1561:1-1561:11.
- J. Qin et al., "Line-Scan Hyperspectral Imaging Techniques for Food Safety and Quality Applications," Appl. Sci. vol. 7, no. 2, 2017, pp.125:1-125:22. https://doi.org/10.3390/app7121251
- M. Puneet, "NIR Hyperspectral Imaging For detection of Nut Contamination," New Food, vol. 18, no. 4, 2015, pp. 30-33.
- G. Lu and F. Baowei, "Medical Hyperspectral Imaging: a Review," J. Biomed. Opt., vol. 19, no. 1, 2014, pp. 010901:1-010901:23.
- N.R. Abbasi et al., "Early Diagnosis of Cutaneous Melanoma: Revisiting the ABCD Criteria," JAMA, vol. 292, no. 22, 2004, pp. 2771:1-2771:6.
- I. A. Bratchenko et al., "In Vivo Hyperspectral Imaging of Skin Malignant and Benign Tumors in Visible Spectrum," J. Biomedical Photon. Eng., vol. 4, no. 1, 2018, pp. 010301:1-010301:8.