DOI QR코드

DOI QR Code

한계 제로 네트워크: 한계 없는 네트워크를 위한 초연결 포토닉스 기술 동향

Limit-Zero Network: Trends of Hyper-Connected Photonics Technology for Limitless Network

  • 발행 : 2019.02.01

초록

The prosperity of modern society is heavily depending on communication technology. Communication is now expanding its roles from personal convenience to social/industrial functioning. Photonics was first introduced to communication in longdistance transmission area since it provided wide bandwidth cost-effectively. However, nowadays, photonics is not only a harmonious collaborator with electronics, but has its own exclusive playgrounds in various parts of communication. Limit-zero network pursues a network that can provide abundant capacity and efficiency using very limited resources. Photonics is the most promising candidate to accomplish the goal. In this article, we review the current status and predict the future contributions of photonics to limit-zero network.

키워드

HJTOCM_2019_v34n1_49_f0001.png 이미지

(그림 4) 광트랜시버고집적화 방향

HJTOCM_2019_v34n1_49_f0002.png 이미지

(그림 1) 유무선 광액세스망 구성도

HJTOCM_2019_v34n1_49_f0003.png 이미지

(그림 2) 평창올림픽에서 시연된 Indoor DAS 네트워크 구조 (좌) 및 네트워크 포설 현황(우)

HJTOCM_2019_v34n1_49_f0004.png 이미지

(그림 3) 근거리용 포토닉스 기반 THz 전송 기술 개념도

HJTOCM_2019_v34n1_49_f0005.png 이미지

(그림 5) ETRI의 PSON 시스템 구조도

<표 1> 이더넷 전송 규격: 다양한 광신호 인터페이스

HJTOCM_2019_v34n1_49_t0001.png 이미지

<표 2> 광트랜시버 기술 로드맵

HJTOCM_2019_v34n1_49_t0002.png 이미지

참고문헌

  1. China Mobile White Paper, "The Road Towards Green RAN," Oct. 2011
  2. T. Yoshida et al., "Application Drivers and Trends for Future Broadband Access," Opt. Fiber Commun. Conf. Exhibit., Los Angeles, CA, USA, Mar. 22-26, pp. Th3B.1:1-3.
  3. Cisco, "Cisco Visual Networking Index: Forecast and Trends, 2017-2022," White Paper, Nov. 2018.
  4. D. Nasset, "NG-PON2 Technology and Standards," J. Lightw. Technol., vol. 33, no. 5, 2015, pp. 1136-1143. https://doi.org/10.1109/JLT.2015.2389115
  5. S. Shankland, "How 5G Aims to End network latency," CINet, Dec. 8, 2018, available from https://www.cnet.com/news/how-5g-aims-to-end-network-latency-response-time/
  6. IEEE P802.3ca 50G-EPON Task Force, available from http://www.ieee802.org/3/ca/
  7. 정환석, "초실감 서비스를 위한 광액세스 기술," Opt. Photon. Congress, 부산, 2018, 8. 27-29.
  8. K. Kim et al., "High Speed and Low Latency Passive Optical Network for 5G Wireless Systems," J. Lightw. Technol., accepted.
  9. H.H. Lee et al., "Experimental Demonstration of 50 Gb/s (2 ${\times}$ 25 Gb/s) TDM/WDM PON over 64-Way Power Split Using O-Band Up/Down Transmission Over 20 km with Dynamic Bandwidth Allocation and SDN Control," Opt. Express, vol. 26, no. 19, Sept. 2018, pp. 25120-25128. https://doi.org/10.1364/OE.26.025120
  10. S.-H. Cho et al., "Cost-Effective Next Generation Mobile Fronthaul Architecture with Multi-IF Carrier Transmission Scheme," Opt. Fiber Commun. (OFC) Conf., San Francisco, CA, USA, Mar. 2014, pp. Tu2B.6:1-3.
  11. X. Li et al., "Real-Time Demonstrations of Over 20Gb/s V- and W-Band Wireless Transmission Capacity in One OFDM-RoF System," Opt. Fiber Commun. (OFC) Conf., Los Angeles, CA, USA, Mar. 2017, pp. M3E.3:
  12. H. Zeng et al., "Demonstration of a Real-Time FPGA-Based CPRI-Compatible Efficient Mobile Fronthaul Transceiver Supporting 53 Gb/s CPRI-Equivalent Data Rate Using," Eur. Conf. Opt. Commun., Dusseldorf, Germany, Sept. 18-22, 2016, pp. 1-3.
  13. M. Sung et al., "Demonstration of 5G Trial Service in 28 GHz Millimeter Wave Using IFoF-Based Analog Distributed Antenna System," Photon, Conf., Pyeongchang, Rep. of Korea, Sept. 2018, 2018. pp. F1A-I-3:298-299.
  14. T. Nagatsuma et al., "Recent Progress and Future Prospect of Photonics-Enabled Terahertz Communications Research," IEICE Trans. Electron., vol. E98-C, no. 12, 2015. pp. 1060-1070. https://doi.org/10.1587/transele.E98.C.1060
  15. M.F. Hermelo et al., "Spectral Efficient 64-QAM-OFDM Terahertz Communication Link," Opt. Express, vol. 25, no. 16, 2017, pp. 19360-19370. https://doi.org/10.1364/OE.25.019360
  16. X. Pang et al., "260 Gbit/s Photonic-Wireless Link in the THz Band," IEEE Photon. Conf., Waikoloa, HI, USA, Oct. 2016, pp. 1-2.
  17. T. Nagatsuma et al., "Advances in Terahertz Communications Accelerated by Photonics," Nature Photon., vol. 10, 2016, pp. 371-379. https://doi.org/10.1038/nphoton.2016.65
  18. K. Liu et al., "100 Gbit/s THz Photonic Wireless Transmission in the 350-GHz Band With Extended Reach," Photon. Technol. Lett., vol. 30, no. 11, 2018, pp. 1064-1067. https://doi.org/10.1109/LPT.2018.2830342
  19. K.H. Park et al., "Semiconductor-Based Terahertz Photonics for Industrial Applications," Opt. Fiber Commun. (OFC) Conf., Los Angeles, CA, USA, Mar. 2017, pp. W4B.4.
  20. Ethernet Alliance, "To Terabit Speeds," 2018, available from https://ethernetalliance.org/
  21. WIKIPEDIA, "To Terabit Speeds," 2018, available from https://en.wikipedia.org/wiki/Terabit_Ethernet
  22. CFP8 MSA, "CFP8 Hardware Specification," 2017, available from http://www.cfp-msa.org/
  23. OSFP MSA, "Specification for OSFP Octal Small Form Factor Pluggable Module," 2018, available from https://osfpmsa.org/
  24. QSFP-DD MSA, "QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver," 2018, available from http://www.qsfp-dd.com/
  25. COBO MSA, "COBO 8-Lane & 16-Lane On-Board Optics Specification," 2018, available from https://onboardoptics.org/
  26. FIRSTPOST, "Microsoft, Cisco, and Others Create 'Consortium for On-Board Optics'," 2015, available from https://www.firstpost.com/business/microsoft-cisco-others-create-consortium-board-optics-2170617.html
  27. R. Blum, "Integrated Slicon Photonics for Future Data Center Applications," Eur. Conf. Opt. Commun., Roma, Italy, Sept. 2018.
  28. K. Schmidtke, "Open Packet Optical Architectures for Next Generation Data Centers," Eur. Conf. Opt. Commun., Roma, Italy, Sept. 2018.
  29. Deliverable D5.2 Control and Data Plane Integration, http://www.ict-lightness.eu
  30. H. Ballani et al., "Bridging the Last Mile for Optical Switching in Data Centers," Opt. Fiber Commun. Conf. Exposition, San Diego, CA, USA, Mar. 11-15, 2018, pp. 1-3.
  31. K. Clark et al., "Sub-Nanosecond Clock and Data Recovery in an Optically-Switched Data Centre Network," Eur. Conf. Opt. Commun., Rome, Italy, 2018.
  32. 유연철 외, "초저지연 인프라 기술", 전자통신동향분석, 제32권 제1호, 2017. 2, pp. 13-24. https://doi.org/10.22648/ETRI.2017.J.320102
  33. N. Terzenidis et al., "High-Port and Low-Latency Optical Switches for Disaggregated Data Centers: The Hipo${\lambda}$aos Switch Architecture," IEEE/OSA J. Opt. Commun. Netw., vol. 10, no. 7, 2018, pp. B102-B116. https://doi.org/10.1364/JOCN.10.00B102
  34. S. Han et al., "Network Support for Resource Disaggregation in Next-Generation Datacenters" Proc. ACM Workshop - Hot Topics Netw., College Park, MD, USA, Nov. 21-22, 2013.
  35. G. Casey, "GEN-Z: High-Performance Interconnect for the Data-Centric Future," OPC U.S. Summit, Mar. 21, 2018.
  36. C. S. Li et al., "Composable Architecture for Rack Scale Big Data Computing," Future Generation Comput. Syst., vol. 67, Feb. 2017, pp. 180-193. https://doi.org/10.1016/j.future.2016.07.014
  37. D.J. Richardson, "Filling the Light Pipe," Sci., vol. 330, Oct. 2010, pp. 327-328. https://doi.org/10.1126/science.1191708
  38. SAFARI, available from http://www.ict-safari.eu/
  39. CORDIS, "Scalable and Flexible optical Architecture for Reconfigurable Infrastructure," 2014, available from https://cordis.europa.eu/project/rcn/196615_en.html
  40. T. Morioka, "New Generation Optical Infrastructure Technologies: EXAT Initiative, Towards 2020 and Beyond," OptoElectron. Commun. Conf., Vienna, Austria, July 13-17, 2009, pp. FT4:1-2.
  41. S. H. Chang et al., "All-Fiber 6-Mode Multiplexers Based on Fiber Mode Selective Couplers," Opt. Express, vol. 25, no. 5, 2017, pp. 5734-5741. https://doi.org/10.1364/OE.25.005734
  42. 장순혁 외 "모드 분할 다중 광전송," Opt. Photon. Congress, 부산, 2018, 8. 27-29, pp. W2D-1.
  43. AIM, available from http://www.aimphotonics.com/
  44. Hewlett Packard Enterprise, available from https://www.labs.hpe.com/next-next/light
  45. Y. Chen et al., "Deep Learning with Coherent Nanophotonic Circuits," Nature Photon., vol. 11, 2017, pp. 441-447. https://doi.org/10.1038/nphoton.2017.93
  46. T.F. Lima et al., "Progress in Neuromorphic Photonics," Nanophoton., vol. 6, 2017, pp. 577-599. https://doi.org/10.1515/nanoph-2016-0139