DOI QR코드

DOI QR Code

Passive parasitic UWB antenna capable of switched beam-forming in the WLAN frequency band using an optimal reactance load algorithm

  • Lee, Jung-Nam (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lee, Yong-Ho (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lee, Kwang-Chun (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Tae Joong (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
  • Received : 2018.08.16
  • Accepted : 2019.02.18
  • Published : 2019.12.06

Abstract

We propose a switched beam-forming antenna that satisfies not only ultra-wideband characteristics but also beam-forming in the WLAN frequency band using an ultra-wideband antenna and passive parasitic elements applying a broadband optimal reactance load algorithm. We design a power and phase estimation function and an error correction function by re-analyzing and normalizing all the components of the parasitic array using control system engineering. The proposed antenna is compared with an antenna with a pin diode and reactance load value, respectively. The pin diode is located between the passive parasitic elements and ground plane. An antenna beam can be formed in eight directions according to the pin diode ON (reflector)/OFF (director) state. The antenna with a reactance load value achieves a better VSWR and gain than the antenna with a pin diode. We confirm that a beam is formed in eight directions owing to the RF switch operation, and the measured peak gain is 7 dBi at 2.45 GHz and 10 dBi at 5.8 GHz.

Keywords

References

  1. J. N. Lee et al., Design of an ultra-wideband antenna using a ring resonator with a notch function, ETRI J. 35 (2013), no. 6, 1075-1083. https://doi.org/10.4218/etrij.13.0113.0472
  2. J. N. Lee and J. K. Park, Compact uwb chip antenna design using the coupling concept, Prog. Electromag. Res. 90 (2009), 341-351. https://doi.org/10.2528/PIER09011901
  3. P. Gao and S. He, A compact uwb and bluetooth slot antenna for mimo/diversity applications, ETRI J. 36 (2014), no. 2, 309-312. https://doi.org/10.4218/etrij.14.0213.0270
  4. J. N. Lee et al., Design of dual-band antenna with u-shaped open stub for wlan/uwb applications, Microw. Opt. Technol. Lett. 51 (2009), no. 2, 284-289. https://doi.org/10.1002/mop.24033
  5. J. N. Lee, J. K. Park, and I. H. Choi, A compact filter-combined ultra-wideband antenna for uwb applications, Microw. Opt. Technol. Lett. 50 (2008), no. 11, 2839-2845. https://doi.org/10.1002/mop.23839
  6. J. N. Lee, J. K. Park, and S. S. Choi, Design of a compact frequency notched uwb slot antenna, Microw. Opt. Technol. Lett. 48 (2006), no. 1, 105-107. https://doi.org/10.1002/mop.21276
  7. J. N. Lee and J. K. Park, Impedance characteristics of a trapezoidal ultra-wideband antenna having a notch function, Microw. Opt. Technol. Lett. 46 (2005), no. 5, 503-506. https://doi.org/10.1002/mop.21029
  8. L. C. Godara, Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations, Proc. IEEE. 85 (1997), no. 8, 1195-1245. https://doi.org/10.1109/5.622504
  9. M. V. Ivashina et al., An optimal beamforming strategy for widefiled surveys with phased-array-fed reflector antennas, IEEE Trans. Antennas Propag. 59 (2011), no. 6, 1864-1875. https://doi.org/10.1109/TAP.2011.2123865
  10. X. Gao, L. Dai, and A. M. Sayeed, Low RF-complexity technologies to enable millimeter-wave mimo with large antenna array for 5g wireless communications, IEEE Commun. Mag. 56 (2018), no. 4, 211-217. https://doi.org/10.1109/MCOM.2018.1600727
  11. K. Kibaroglu, M. Sayginer, and G. M. Rebeiz, An Ultra low-cost 32-element 28 GHz phased-array transceiver with 41 dBm EIRP and 1.0 - 1.6 Gbps 16-QAM link at 300 meters, in IEEE Radio Freq. Integrat. Circuits Symp. Honoloulu, HI, USA, June 2017, pp. 73-76.
  12. S. Zhang et al., A planar switchable 3-D-coverage phased array antenna and its user effects for 28-GHz mobile terminal applications, IEEE Trans. Antennas Propag. 65 (2017), no. 12, 6413-6421. https://doi.org/10.1109/TAP.2017.2681463
  13. S. Han et al., Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G, IEEE Commun. Mag. 53 (2015), no. 1, 186-194. https://doi.org/10.1109/MCOM.2015.7010533
  14. J. D. Fredrick, Y. Wang, and T. Itoh, A smart antenna receiver array using a single RF channel and digital beamforming, IEEE Trans. Microw. Theory Tech. 50 (2002), no. 12, 3052-3058. https://doi.org/10.1109/TMTT.2002.805150
  15. W. Roh et al., Millimeter-wave beamforming as an enabling technology for 5g cellular communications: theoretical feasibility and prototype results, IEEE Commun. Mag. 52 (2014), no. 2, 106-113. https://doi.org/10.1109/MCOM.2014.6736750
  16. J. Zhang, W. Wu, and D. G. Fang, Single RF channel digital beamforming multibeam antenna array based on time sequence phase weighting, IEEE Antennas Wirel. Propag. Lett. 10 (2011), 514-516. https://doi.org/10.1109/LAWP.2011.2157073
  17. M. Harter et al., 24 GHz digital beamforming radar with T-shaped antenna array for three-dimensional object detection, Int. J. Microw. Wireless Technol. 4 (2011), no. 3, 327-334. https://doi.org/10.1017/S1759078712000414
  18. S. Kim and Y. E. Wang, A series-fed microstrip receiving array for digital beamforming, IEEE Antennas Wirel. Propag. Lett. 3 (2004), 332-335. https://doi.org/10.1109/LAWP.2004.839460
  19. D. H. Gwak, I. S. Sohn, and S. H. Lee, Analysis of single-RF MIMO receiver with beam-switching antenna, ETRI J. 37 (2015), 647-656. https://doi.org/10.4218/etrij.15.0114.0618
  20. P. K. Pal and R. S. Sherratt, MIMO channel capacity and configuration selection for switched parasitic antennas, ETRI J. 40 (2018), 197-206. https://doi.org/10.4218/etrij.2017-0071
  21. Y. K. Cho et al., ${\lambda}$/16 spaced single RF chain MIMO antenna using low-power CMOS switches, Eur. Microw. Conf., Paris, France, Dec. 2015, pp. 726-729.
  22. S. Zhang, I. Syrytsin, and G. F. Pedersen, Compact beam-steerable antenna array with two passive parasitic elements for 5G mobile terminals at 28 GHz, IEEE Trans. Antennas Propag. 66 (2018), 5193-5203. https://doi.org/10.1109/TAP.2018.2854167
  23. M. Yousefbeiki and J. P. Carrier, Towards compact and frequency-tunable antenna solutions for MIMO transmission with a single RF chain, IEEE Trans. Antennas Propag. 62 (2014), no. 3, 1065-1073. https://doi.org/10.1109/TAP.2013.2267197
  24. J. Cheng, Y. Kamiya, and T. Ohira, Adaptive beamforming of ESPAR antenna based on steepest gradient algorithm, IEICE Trans. Commun. E84-B (2001), no. 7, 1790-1800.
  25. C. Sun et al., Fast beamforming of electronically steerable parasitic array radiator antenna: Theory and experiment, IEEE Trans. Antennas Propag. 52 (2004), no. 7, 1819-1832. https://doi.org/10.1109/TAP.2004.831314
  26. M. Yousefbeiki, O. N. Alrabadi, and J. P. Carrier, Efficient MIMO transmission of PSK signals with a single-radio reconfigurable antenna, IEEE Trans. Commun. 62 (2014), 567-577. https://doi.org/10.1109/TCOMM.2013.122113.130481
  27. SKY13575-639LF Datasheet and Product Info, http://www.skyworksinc.com.