DOI QR코드

DOI QR Code

Effects of Virtual Reality-Based Activities of Daily Living Training on Activities of Daily Living and Rehabilitative Motivation in Patients With Traumatic Brain Injury: A Pilot Study

가상현실 기반의 일상생활활동 훈련이 외상성 뇌손상 환자의 일상생활활동 및 재활동기에 미치는 효과 : 예비연구

  • Moon, Jong-Hoon (Dept. of Healthcare and Public Health Research, National Rehabilitation Research Institute, National Rehabilitation Center) ;
  • Jeon, Min-Jae (Dept. of Healthcare and Public Health Research, National Rehabilitation Research Institute, National Rehabilitation Center)
  • 문종훈 (국립재활원 재활연구소 건강보건연구과) ;
  • 전민재 (국립재활원 재활연구소 건강보건연구과)
  • Received : 2019.07.08
  • Accepted : 2019.08.26
  • Published : 2019.11.30

Abstract

Objective : The purpose of this study was to investigate the effects of virtual reality-based activities of daily living (ADL) training on ADL and rehabilitative motivation in patients with traumatic brain injury. Methods : This study was performed using a pre-post design with seven traumatically brain injured patients. Subjects were subjected to virtual reality-based ADL training for 30 minutes a day, 2 to 3 times a week for 4 weeks. Evaluation was conducted before and after the intervention using the Korean Modified Barthel Index (K-MBI), Cognitive Functional Independence Measure (C-FIM), and Volitional Questionnaire (VQ). Changes before and after intervention were analyzed by Wilcoxon signed-rank test, and correlations were analyzed using Spearman's coefficient. Results : After intervention, patients with traumatic brain injury showed significant improvements in K-MBI (p<.05). There was no significant change in total C-FIM score and VQ score (p>.05). Total C-FIM score correlated significantly with VQ score (p<.05, r=.755). The social cognition domain of C-FIM had a significant correlation with VQ score (p<.05, r=826). Conclusions : Virtual reality-based ADL training can improve ADL performance, but further research is needed to determine whether improvements in social cognition and rehabilitative motivation are possible.

목적 : 본 예비 연구는 가상현실 기반의 일상생활활동 훈련이 외상성 뇌손상 환자의 일상생활활동 및 재활동기에 미치는 영향을 알아보고자 한다. 연구방법 : 본 연구는 7명의 외상성 뇌손상 환자를 대상으로 중재 전-후 설계를 수행하였다. 대상자들은 하루 30분, 주 2~3회, 4주간 가상현실 기반의 일상생활활동 훈련을 수행하였다. 중재 전과 후로 평가를 수행하였다. 측정은 수정바델지수, 기능적 독립척도(인지), 의지 설문지가 평가되었다. 중재 전과 후의 변화는 윌콕슨 부호순위 검정으로 분석하였고, 상관관계는 스피어만 상관분석을 이용하였다. 결과 : 중재 후, 외상성 뇌손상 환자는 한국판 수정바델지수에서 유의한 향상을 보였다(p<.05). 기능적 독립척도(인지)와 재활동기는 유의한 변화가 없었다(p>.05). 기능적 독립척도(인지)는 재활동기와 유의한 상관이 있었다(p<.05, r=.755). 기능적 독립척도(인지)의 사회인지영역은 재활동기와 유의한 상관이 있었다(p<.05, r=826). 결론 : 가상현실 기반의 일상생활활동 훈련은 일상생활활동 수행능력을 향상시킬 수 있으나, 사회인지와 재활동기의 개선여부가 가능한지에 대해서는 연구가 더 필요하다.

Keywords

References

  1. Bailey, C. M., Echemendia, R. J., & Arnett, P. A. (2006). The impact of motivation on neuropsychological performance in sports-related mild traumatic brain injury. Journal of the International Neuropsychological Society, 12(4), 475-484. doi:10.1017/S1355617706060619
  2. Bak, I. H. (2019). Effect of virtual reality training focus on ADL on upper extremity function and activities of daily living in stroke patients. Journal of the Korea Entertainment Industry Association, 13(4), 321-329. doi:10.21184/jkeia.2019.6.13.4.321
  3. Bay, E., Hagerty, B. M., Williams, R. A., Kirsch, N., & Gillespie, B. (2002). Chronic stress, sense of belonging, and depression among survivors of traumatic brain injury. Journal of Nursing Scholarship, 34(3), 221-226. doi:10.1111/j.1547-5069.2002.00221.x
  4. Brett, C. E., Sykes, C., & Pires-Yfantouda, R. (2017). Interventions to increase engagement with rehabilitation in adults with acquired brain injury: A systematic review. Neuropsychological Rehabilitation, 27(6), 959-982. doi:10.1080/09602011.2015.1090459
  5. Chen, S. H. A., Thomas, J. D., Glueckauf, R. L., & Bracy, O. L. (1997). The effectiveness of computer-assisted cognitive rehabilitation for persons with traumatic brain injury. Brain Injury, 11(3), 197-210. https://doi.org/10.1080/026990597123647
  6. Chern, J. S., Kielhofner, G., de las Heras, C. G., & Magalhaes, L. C. (1996). The volitional questionnaire: Psychometric development and practical use. American Journal of Occupational Therapy, 50(7), 516-525. doi:10.5014/ajot.50.7.516
  7. Dawson, D. R., Binns, M. A., Hunt, A., Lemsky, C., & Polatajko, H. J. (2013). Occupation-based strategy training for adults with traumatic brain injury: A pilot study. Archives of Physical Medicine and Rehabilitation, 94(10), 1959-1963. doi:10.1016/j.apmr.2013.05.021
  8. Dawson, D. R., Gaya, A., Hunt, A., Levine, B., Lemsky, C., & Polatajko, H. J. (2009). Using the cognitive orientation to occupational performance (CO-OP) with adults with executive dysfunction following traumatic brain injury. Canadian Journal of Occupational Therapy, 76(2), 115-127. doi:10.1177/000841740907600209
  9. Driver, S., & Ede, A. (2009). Impact of physical activity on mood after TBI. Brain Injury, 23(3), 203-212. doi:10.1080/02699050802695574
  10. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. doi:10.3758/BRM.41.4.1149
  11. Finset, A., Dyrnes, S., Krogstad, J. M., & Berstad, J. (1995). Self-reported social networks and interpersonal support 2 years after severe traumatic brain injury. Brain injury, 9(2), 141-150. https://doi.org/10.3109/02699059509008187
  12. Folmer, R. L., Billings, C. J., Diedesch-Rouse, A. C., Gallun, F. J., & Lew, H. L. (2011). Electrophysiological assessments of cognition and sensory processing in TBI: Applications for diagnosis, prognosis and rehabilitation. International Journal of Psychophysiology, 82(1), 4-15. doi:10.1016/j.ijpsycho.2011.03.005
  13. Granger, C. V., Albrecht, G. L., & Hamilton, B. B. (1979). Outcome of comprehensive medical rehabilitation: Measurement by PULSES profile and the Barthel Index. Archives of Physical Medicine and Rehabilitation, 60(4), 145-154.
  14. Granger, C. V., Cotter, A. C., Hamilton, B. B., & Fiedler, R. C. (1993). Functional assessment scales: A study of persons after stroke. Archives of Physical Medicine and Rehabilitation, 74(2), 133-138.
  15. Grealy, M. A., Johnson, D. A., & Rushton, S. K. (1999). Improving cognitive function after brain injury: The use of exercise and virtual reality. Archives of Physical Medicine and Rehabilitation, 80(6), 661-667. doi:10.1016/S0003 -9993(99)90169-7
  16. Hoofien, D., Gilboa, A., Vakil, E., & Donovick, P. J. (2001). Traumatic brain injury (TBI) 10-20 years later: A comprehensive outcome study of psychiatric symptomatology, cognitive abilities and psychosocial functioning. Brain Injury, 15(3), 189-209. doi:10.1080/026990501300005659
  17. Huang, M. E., Cifu, D. X., & Keyser-Marcus, L. (2000). Functional outcomes in patients with brain tumor after inpatient rehabilitation: Comparison with traumatic brain injury. American Journal of Physical Medicine & Rehabilitation, 79(4), 327-335. https://doi.org/10.1097/00002060-200007000-00003
  18. Jung, H. Y., Park, B. K., Shin, H. S., Kang, Y. K., Pyun, S. B., Paik, N. J., ... Han, T. R. (2007). Development of the Korean version of Modified Barthel Index (K-MBI): Multi-center study for subjects with stroke. Journal of the Korean Academy of Rehabilitation Medicine, 31(3), 283-297.
  19. Marin, R. S., & Wilkosz, P. A. (2005). Disorders of diminished motivation. Journal of Head Trauma Rehabilitation, 20(4), 377-388. https://doi.org/10.1097/00001199-200507000-00009
  20. Moon, J. H., & Won, Y. S. (2016). Effects of cognitive treatment programs using smart device applications on attention, working memory, and treatment preference in patients with stroke. Journal of cognitive Enhancement and Intervention, 7(3), 1-16.
  21. Moon, J. H., Park, K. Y., Kim, H. J., & Na, C. H. (2018). The effects of task-oriented circuit training using rehabilitation tools on the upper-extremity functions and daily activities of patients with acute stroke: A randomized controlled pilot trial. Osong Public Health and Research Perspectives, 9(5), 225-230. doi:10.24171/j.phrp.2018.9.5.03
  22. Nayak, S., Wheeler, B. L., Shiflett, S. C., & Agostinelli, S. (2000). Effect of music therapy on mood and social interaction among individuals with acute traumatic brain injury and stroke. Rehabilitation Psychology, 45(3), 274-283. doi:10.1037//0090-5550.45.3.274
  23. Ng, E. M., Polatajko, H. J., Marziali, E., Hunt, A., & Dawson, D. R. (2013). Telerehabilitation for addressing executive dysfunction after traumatic brain injury. Brain Injury, 27(5), 548-564. doi:10.3109/02699052.2013.766927
  24. Pearce, J. M. S. (2004). Positive and negative cerebral symptoms: The roles of russell reynolds and hughlings jackson. Journal of Neurology, Neurosurgery & Psychiatry, 75(8), 1148-1148. doi:10.1136/jnnp.2004.038422
  25. Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation. Cyberpsychology & Behavior, 8(3), 241-262. doi:10.1089/cpb.2005.8.241
  26. Sacco, K., Cauda, F., D'Agata, F., Duca, S., Zettin, M., Virgilio, R., ... Appendino, S. (2011). A combined robotic and cognitive training for locomotor rehabilitation: Evidences of cerebral functional reorganization in two chronic traumatic brain injured patients. Frontiers In Human Neuroscience, 23(5), 146. doi:10.3389/fnhum.2011.00146
  27. Scheid, R., Preul, C., Gruber, O., Wiggins, C., & Von Cramon, D. Y. (2003). Diffuse axonal injury associated with chronic traumatic brain injury: Evidence from T2*-weighted gradient-echo imaging at 3T. American Journal of Neuroradiology, 24(6), 1049-1056.
  28. Schultheis, M. T., & Rizzo, A. A. (2001). The application of virtual reality technology in rehabilitation. Rehabilitation Psychology, 46(3), 296. doi:10.1037/0090-5550.46.3.296
  29. Shiroma, E. J., Ferguson, P. L., & Pickelsimer, E. E. (2012). Prevalence of traumatic brain injury in an offender population: A meta-analysis. The Journal of Head Trauma Rehabilitation, 27(3), 1-10. doi:10.1097/HTR.0b013e 3182571c14.
  30. Steuer, J. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73-93. doi:10.1111/j.1460-2466.1992.tb00812.x
  31. Stineman, M. G., Shea, J. A., Jette, A., Tassoni, C. J., Ottenbacher, K. J., Fiedler, R., & Granger, C. V. (1996). The functional independence measure: Tests of scaling assumptions, structure, and reliability across 20 diverse impairment categories. Archives of Physical Medicine and Rehabilitation, 77(11), 1101-1108. doi:10.1016/S0003-9993(96)90130-6
  32. Thornton, M., Marshall, S., McComas, J., Finestone, H., McCormick, A., & Sveistrup, H. (2005). Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: Perceptions of participants and their caregivers. Brain Injury, 19(12), 989-1000. doi:10.1080/02699050500109944
  33. Tulsky, D. S., Kisala, P. A., Victorson, D., Carlozzi, N., Bushnik, T., Sherer, M., ... Englander, J. (2016). TBI-QOL: Development and calibration of item banks to measure patient reported outcomes following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 31(1), 40-51. doi:10.1097/HTR.0000000000000131
  34. Winkens, I., Van Heugten, C. M., Visser-Meily, J. M. A., & Boosman, H. (2014). Impaired selfawareness after acquired brain injury: Clinicians' ratings on its assessment and importance for rehabilitation. Journal of Head Trauma Rehabilitation, 29(2), 153-156. doi:10.1097/HTR.0b013e31827d1500.
  35. Woo, H. S., Park, W. K., & Cha, T. H. (2012). Correlation between Korean-WMFT functional score and activities of daily living. Korean Journal of Occupational Therapy, 20(3), 95-104.
  36. Zhang, L., Abreu, B. C., Seale, G. S., Masel, B., Christiansen, C. H., & Ottenbacher, K. J. (2003). A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: Reliability and validity. Archives of Physical Medicine and Rehabilitation, 84 (8), 1118-1124. doi:10.1016/S0003-9993(03)00203-X