DOI QR코드

DOI QR Code

Higher Production of Biolipids from Botryococcus braunii using Pre-treated Solvent Extraction Methods

해양생물 Botryococcus braunii에서 유래한 바이오연료의 고급생산기술: 전처리 용매추출법

  • Kwon, Sung-Hyun (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Cho, Daechul (Department of Energy & Environmental Engineering, Soonchunhyang University)
  • 권성현 (경상대학교 해양과학대학 해양환경공학과) ;
  • 조대철 (순천향대학교 에너지환경공학과)
  • Received : 2019.07.22
  • Accepted : 2019.11.04
  • Published : 2019.11.30

Abstract

A lipid-enriched strain of Botryococcus braunii (UTEX 572) was cultivated in a semi-batch aeration tank to enhance biomass as well as to develop intracellular lipids and fatty acids. A 30 day period of incubation produced 1.39 g/L of biomass and 0.31 g/L of total lipids in the biomass. The grown biomass was pre-treated using several methods to extract the total lipid content efficiently: ultrasonication was found to yield the highest percentage of lipids-namely 19.8% per biomass. Direct heating of biomass in an autoclave also showed better performance than when using only conventional solvent extraction. To enhance the biomass harvest and lipid extraction efficiency, coagulation and flocculation steps were added to the extraction process. It is noteworthy that not only the solvent type but also the solvent/biomass ratio greatly affected efficiency. In addition, the moisture content of the harvested(wet) biomass affected the efficiency significantly. This study elucidated the need for future research on optimizing this extraction process.

Keywords

References

  1. Bajpai, P., Bajpai, P. K., 1993, Eicosapentaenoic acid (EPA) production from icroorganisms: a review, J. Biotechnol., 30(2), 161-183. https://doi.org/10.1016/0168-1656(93)90111-Y
  2. Balachanolran, K., Nagamany, N., 2012, Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor, Bioresour. Technol., 108, 196-202. https://doi.org/10.1016/j.biortech.2011.12.146
  3. Brennan, L., Owende, P., 2010, Biofulels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  4. Chaiklahan, R., Chirasuwan, N., Loha, V., Bunnag, B., 2008, Lipid and fatty acids extraction from the Cyanobacterium spirulina, Sci. Asia, 34, 299-300. https://doi.org/10.2306/scienceasia1513-1874.2008.34.299
  5. Cooney, M., Young, G., Nagle, N., 2009, Extraction of Bio-oils from microalgae. Sep. Purif. Rev., 38, 291-325. https://doi.org/10.1080/15422110903327919
  6. Cui, Y., Rashida, N., Huc, N., Rehman, M. S. U., Han, J., 2014, Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode, Energy Convers Manage., 79, 674-680. https://doi.org/10.1016/j.enconman.2013.12.032
  7. Endo, H., Hosoya, H., Koibuchi, T., 1977, Growth yields of Chlorella regularis in dark-heterotrophic continuous cultures using acetate., J. Ferment. Technol., 55, 369-370.
  8. Griffiths, M. J., Van Hille, R. P., Harrison, S. T. L., 2012, Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen deplete and limited conditions, J. Appl. Phycol., 24, 989-1001. https://doi.org/10.1007/s10811-011-9723-y
  9. Grima, E. M., Camacho, F. G., Perez, J. A. S., 1994, Biochemical productivity and fatty acid profiles of Isochrysis galbana Parke and Tetraselmis sp. as a function of incident light intensity, Process Biochemistry, 29(2), 119-126. https://doi.org/10.1016/0032-9592(94)80004-9
  10. Hossain, A. B. M. S., Salleh, A., 2008, Biodiesel fuel production from algae as renewable energy, Am. J. Biochem, Biotechnol., 4, 250-254. https://doi.org/10.3844/ajbbsp.2008.250.254
  11. Huerlimann, R., Heimann, K., De Nys, R., 2010, Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production, Biotechnol. Bioeng., 107, 245-257. https://doi.org/10.1002/bit.22809
  12. Janssen, M., Tramper, J., Mur, L. R., Wijffels, R. H., 2003, Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects, Biotechnol. Bioeng., 81, 193-210. https://doi.org/10.1002/bit.10468
  13. Kosaric, N., Velikonja, J., 1995, Liquid and gaseous fuels from biotechnology: Challenge and opportunities, FEMS Microbiol. Rev., 16, 111-142. https://doi.org/10.1111/j.1574-6976.1995.tb00161.x
  14. Kwon, S. H., Lee, E., Cho, D., 2012, Optimal culturing and enhancement of lipid accumulation in a microalga Botryococcus braunii, J. Environ. Sci. Int., 21(7), 779-785. https://doi.org/10.5322/JES.2012.21.7.779
  15. Lee, S. J., Kim, S. B., Kim, J. E., Kwon, G. S., Yoon, B. D., Oh, H. M., 1998, Effects of harvesting time and growth stage on the flocculation of the green alga Botryococcus braunii, Lett. Appl. Microbiol., 27, 14-18. https://doi.org/10.1046/j.1472-765X.1998.00375.x
  16. Lee, S. J., Yoon, B D., Oh, H. M., 1998, Rapid method for the determination of lipids from the green alga Botryococcus braunii, Biotechnol. Tech., 12, 553-556. https://doi.org/10.1023/A:1008811716448
  17. Metzger, P., Largeau, C., 2005, Botryococcus braunii: a rich source for hydrocarbons and related ether lipids, Appl. Microbiol. Biotechnol., 66, 486-496. https://doi.org/10.1007/s00253-004-1779-z
  18. Pokoo-Aikins, G., Heath, A., Mentzer, R. A., Sam Mannan, M., Rogers, W. J., El-Halwagi, M. M., 2010, A Multi-criteria approach to screening alternatives for converting sewage sludge to biodiesel, J. Loss Prev. Proc. Indus., 23, 412-420. https://doi.org/10.1016/j.jlp.2010.01.005
  19. Rao, R. K., Arnold, L. K., 1958, Alcoholic extraction of vegatable oils, pilot plant extraction of cotton seed by agueous ethanol., J. Am. Oil Chem. Soc., 35, 277-281. https://doi.org/10.1007/BF02640111
  20. Rashid, N., Rehman, S. U., Han, J. I., 2013, Rapid harvesting of fresh water microalgae using poly-glucosamine, Proc. Biochem., 48, 1107-1110. https://doi.org/10.1016/j.procbio.2013.04.018
  21. Siddiguee, M. N., Rohan, S., 2011, Lipid extraction and biodiesel production from municipal sewage sludges: a review, Renew. Sust. Energy Rev., 15, 1067-1072. https://doi.org/10.1016/j.rser.2010.11.029
  22. Singh, J., Gu, S., 2010, Commercialization potential of microalgae for biofuel production, Renew. Sust. Energy Rev., 14, 2596-2610. https://doi.org/10.1016/j.rser.2010.06.014
  23. Ting, C., Stephen, Y. P., Ratanachat, R., Yebo, L., 2013, Cultivation of Nannochloropsis salina using aerobic digestion effluent as a nutrient source for biofuel production, Appl. Energy, 108, 486-492. https://doi.org/10.1016/j.apenergy.2013.03.056
  24. Udman, N., Qi, Y., Danquah, M. K., Forde G. M., Hoadly A., 2010, Dewatering of microalgal cultures: A major bottleneck to algae-based fuels, J. Renew. Sust. Energ., 2, 012701. https://doi.org/10.1063/1.3294480
  25. Ugwu, C. U., Aoyagi, H., Uchiyama, H., 2008, Photobioreactors for mass cultivation of algae, Bioresour. Technol., 99, 4021-4028. https://doi.org/10.1016/j.biortech.2007.01.046
  26. Wolf, F. R., Nonomura, A. M., Bassham, J. A., 1985, Growth and branched hydrocarbon production in a strain of Botryococcus braunii(Chlorophyta), J. Phycol., 21, 388-396. https://doi.org/10.1111/j.0022-3646.1985.00388.x
  27. Xiao, M, Shin, H. J., Dong, Q., 2013, Advances in cultivation and processing techniques for microalgal biodiesel: A review, Korean J. Chem. Eng., 30, 2119-2126. https://doi.org/10.1007/s11814-013-0161-1
  28. Xu, H., Miao, X., Wu, Q., 2006, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, J. Biotechnol., I26(4), 449-507.