DOI QR코드

DOI QR Code

Assessing Hydrologic Impacts of Climate Change in the Mankyung Watershed with Different GCM Spatial Downscaling Methods

GCM 공간상세화 방법별 기후변화에 따른 수문영향 평가 - 만경강 유역을 중심으로 -

  • Kim, Dong-Hyeon (Department of Rural Construction Engineering, Jeonbuk National University) ;
  • Jang, Taeil (Department of Rural Construction Engineering, Jeonbuk National University) ;
  • Hwang, Syewoon (Department of Agricultural Engineering, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Cho, Jaepil (Convergence Center for Watershed Management, Integrated Watershed Management Institute (IWMI))
  • Received : 2019.09.30
  • Accepted : 2019.10.30
  • Published : 2019.11.30

Abstract

The objective of this study is to evaluate hydrologic impacts of climate change according to downscaling methods using the Soil and Water Assessment Tool (SWAT) model at watershed scale. We used the APCC Integrated Modeling Solution (AIMS) for assessing various General Circulation Models (GCMs) and downscaling methods. AIMS provides three downscaling methods: 1) BCSA (Bias-Correction & Stochastic Analogue), 2) Simple Quantile Mapping (SQM), 3) SDQDM (Spatial Disaggregation and Quantile Delta Mapping). To assess future hydrologic responses of climate change, we adopted three GCMs: CESM1-BGC for flood, MIROC-ESM for drought, and HadGEM2-AO for Korea Meteorological Administration (KMA) national standard scenario. Combined nine climate change scenarios were assessed by Expert Team on Climate Change Detection and Indices (ETCCDI). SWAT model was established at the Mankyung watershed and the applicability assessment was completed by performing calibration and validation from 2008 to 2017. Historical reproducibility results from BCSA, SQM, SDQDM of three GCMs show different patterns on annual precipitation, maximum temperature, and four selected ETCCDI. BCSA and SQM showed high historical reproducibility compared with the observed data, however SDQDM was underestimated, possibly due to the uncertainty of future climate data. Future hydrologic responses presented greater variability in SQM and relatively less variability in BCSA and SDQDM. This study implies that reasonable selection of GCMs and downscaling methods considering research objective is important and necessary to minimize uncertainty of climate change scenarios.

Keywords

References

  1. Ali, S., H. I. Eum, J. Cho, L. Dan, F. Khan, K. Dairaku, M. L. Shrestha, S. Hwang, W. Nasim, I. A. Khan, and S. Fahad, 2019. Assessment of climate extream in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmospheric Research 222: 114-133. doi:10.1016/j.atmosres.2019.02.009.
  2. Arnold, J. G., J. R. Williams, R. Srinivasan, and K. W. King, 1996. SWAT manual, USDA. Agricultural Research Service and Blackland Research Center, Texas.
  3. Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998. Large area hydrologic modeling and assessment part I: Model development. Journal of American Water Resources Association 34(1): 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  4. Baek, G. H., M. G. Lee, and B. J. Kang, 2011. Development of spatial statistical downscaling method for KMA-RCM by using GIS. The Korean Association of Geographic Information Studies 14(3): 136-149 (in Korean). https://doi.org/10.11108/kagis.2011.14.3.136
  5. Cammarano, D., M. Rivington, K. B. Matthews, D. G. Miller, and G. Bellocchi, 2017. Implication of climate model biases and downscaling on crop model simulated climate change impacts. European Journal of Agronomy 88: 63-75. doi:10.1016/j.eja.2016.05.012.
  6. Cho, J., I. Jung, W. Cho, E. J. Lee, D. Kang, and J. Lee, 2018a. Suggestion of user-centered climate service framework and development of user interface platform for climate change adaptation. Journal of Climate Change Research 9(1): 1-12. doi:10.15531/KSCCR.2018.9.1.01 (in Korean).
  7. Cho, J., I. Jung, W. Cho, and S. Hwang, 2018b. User-centered climate change scenarios technique development and application of Korean peninsula. Journal of Climate Change Research 9(1): 13-29. doi:10.15531/KSCCR.2018.9.1.13 (in Korean).
  8. Cho, J., S. Hwang, G. Gwang, K. Y. Kim, and J. Kim, 2015. Assessing the climate change impact on agricultural reservoirs using the SWAT model and CMIP5 GCMs. Journal of the Korean Society of Agricultural Engineers 57(5): 1-12. doi:10.5389/KSAE.2015.57.5.001 (in Korean).
  9. Chung, U., J. Cho, and E. J. Lee, 2015. Evaluation of agro-climatic index using multi-model ensemble downscaled climate prediction of CMIP5. Journal of the Korean Agricultural and Forest Meteorology 17(2): 108-125. doi:10.5532/KJAFM.2015.17.2.108 (in Korean).
  10. Eum, H. I., and A. J. Cannon, 2017. Intercomparison of projected changes in climate extremes for South Korea: application of trend preserving statistical downscaling methods to the CMIP5 ensemble. International Journal of Climatology 37: 3381-3397. doi:10.1002/joc.4924.
  11. Her, Y, S. H. Yoo, J. Cho, S. Hwang, J. Jeong, and C. Seong, 2019. Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Scientific Reports 9(1): 4974. doi:10.1038/s41598-019-41334-7.
  12. Hwang, S., J. Cho, and K. S. Yoon, 2018. Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia. Journal of Korea Water Resources Association 51(8): 629-642. doi:10.3741/JKWRA.2018.51.8.629 (in Korean).
  13. Hwang, S., and W. D. Graham, 2013. Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation. Hydrology and Earth System Sciences 17: 4481-4502. doi:10.5194/hess-17-4481-2013.
  14. Hwang, S., and W. D. Graham, 2014. Assessment of alternative methods for statistically downscaling daily GCM precipitation outputs to simulate regional streamflow. Journal of the American Water Resources Association 1-23. doi:10.1111/jawr.12154.
  15. Hwang, S., Y. Her, and S. Chang, 2013. Uncertainty in regional climate change impact assessment using bias-correction technique for future climate scenarios. Journal of the Korean Society of Agricultural Engineers 55(4): 95-106. doi:10.5389/KSAE.2013.55.4.095 (in Korean).
  16. Jung, I., H. I. Eum, E. J. Lee, J. Park, and J. Cho, 2018. Development of representive GCMs selection technique for uncertainty in climate change scenarios. Journal of the Korean Society of Agricultural Engineers 60(5): 149-162. doi:10.5389/KSAE.2018.60.5.149 (in Korean).
  17. Keem, M., I. Ko, and S. Kim, 2009. An analysis of the effect of climate change on Nakdong river flow condition using CGCM's future climate information. Journal of Korean Society on Water Quality 25(6): 863-871 (in Korean).
  18. Kim, D. H., S. Hwang, T. Jang, and H. So, 2018. Assessing climate change impacts on hydrology and water quality using SWAT model in the Mankyung watershed. Journal of the Korean Society of Agricultural Engineers 60(6): 81-94. doi:10.5389/KSAE.2018.60.6.081 (in Korean).
  19. Kim, J. H., and J. I. Yun, 2016. The use and abuse of climate scenarios in agriculture. Korean Journal of Agricultural and Forest Meteorology 18(3): 170-178. doi:10.5532/KJAFM.2016.18.3.170 (in Korean).
  20. Kum, D., Y. Park, Y. H. Jung, M. H. Shin, J. Ryu, J. H. Park, J. E. Yang, and K. J. Lim, 2015. Analysis of rainfall-runoff characteristics on bias correction method of climate change scenarios. Journal of Korean Society on Water Environment 31(3): 241-252. doi:10.15681/KSWE.2015.31.3.241 (in Korean).
  21. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams, 2001. Soil and water assessment tool. Theoretical Documentation.
  22. Park, J., J. Cho, E. J. Lee, and I. Jung, 2017. Evaluation of reference evapotranspiration in South Korea according to CMIP5 GCMs and estimation methods. Journal of the Korean Society of Rural Planning 23(4): 153-168. doi:10.7851/Ksrp.2017.23.4.153 (in Korean).
  23. Walsh, J. E., U. S. Bhatt, J. S. Littell, M. Leonawicz, M. Lindgren, T. A. Kurkowski, P. A. Bieniek, R. Thoman, S. Gray, and T. S. Rupp, 2018. Downscaling of climate model output for Alaskan stakeholders. Environmental Modeling and Software 110: 38-51. doi:10.1016/j.envsoft.018.03.021.
  24. Wang, J., R. Nathan, A. Horne, M. C. Peel, Y. Wei, and J. Langford, 2017. Evaluating four downscaling methods for assessment of climate change impact on ecological indicators. Environmental Modeling and Software 96: 68-82. doi:10.1016/j.envsoft.2017.06.016.
  25. Yoo, S. H., T. Kim, S. H. Lee, and J. Y. Choi, 2015. Trend analysis of projected climate data based on CMIP5 GCMs for climate change impact assessment on agricultural water resources. Journal of the Korean Society of Agricultural Engineers 57(5): 69-80. doi:10.5389/KSAE.2015.57.5.069 (in Korean).