DOI QR코드

DOI QR Code

흑연과 실리콘 일산화물의 혼합물로 구성된 리튬이온 이차전지용 음극의 사이클 성능개선 연구

Improvement of Cycle Performance of Graphite-Silicon Monoxide Mixture Negative Electrode in Lithium-ion Batteries

  • 김해빈 (한국산업기술대학교지식기반기술.에너지대학원) ;
  • 김태훈 (한국산업기술대학교지식기반기술.에너지대학원) ;
  • 류지헌 (한국산업기술대학교지식기반기술.에너지대학원)
  • Kim, Haebeen (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Kim, Tae Hun (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
  • 투고 : 2019.11.05
  • 심사 : 2019.11.15
  • 발행 : 2019.11.30

초록

우수한 수명특성을 지니는 흑연과 높은 용량을 지니고 있는 실리콘 일산화물의 혼합전극을 제조하여 리튬이온 이차전지용 음극으로 적용하여 이의 사이클 성능에 대하여 평가하였다. 천연흑연과 실리콘 일산화물을 9:1의 질량비로 혼합하여 제조한 전극은 $480mAh\;g^{-1}$의 가역용량으로 천연흑연에 비하여 33% 이상의 높은 용량을 나타내었다. 그러나, 실리콘 일산화물의 부피변화로 인하여 용량의 퇴화가 지속적으로 발생하였다. 본 연구에서는 전극 및 전해질의 구성에 변수들을 적용하여 각각의 변수가 영향을 주는 전기화학적 특성을 파악하고 이를 통하여 사이클 수명을 향상시킬 수 있는 방안을 모색하고자 하였다. 전극 제조 시에 poly(vinylidene fluoride)(PVdF) 바인더에 비하여 carboxymethyl cellulose (CMC) 바인더는 가장 우수한 사이클 특성을 나타내었으며, CMC와 styrene-butadiene rubber (SBR)을 함께 사용하는 SBR/CMC 바인더의 경우에는 CMC 단독 바인더를 사용하는 경우와 유사한 사이클 특성과 동시에 속도특성에서 장점을 지니고 있었다. 전해액 첨가제로 fluoroethylene carbonate (FEC)를 적용하는 경우에 수명특성이 크게 개선되었다. FEC의 함량이 10 질량%로 높아지게 되면 전지의 속도특성이 저하되기 때문에 5 질량%의 사용이 적절하였다. 또한 전극의 로딩값을 낮추게 되면 사이클 특성을 크게 향상시킬 수 있었으며, 집전체를 사포로 연마하여 거칠기를 증가시키는 것도 사이클 특성의 개선을 가져올 수 있었다.

Mixture electrodes of a graphite having a good cycle performance and a silicon monoxide (SiO) having a high capacity are fabricated and their cycle performances are evaluated as negative electrodes for lithium-ion batteries. The electrode prepared by mixing the natural graphite and carbon-coated SiO in a mass ratio of 9:1 shows a reversible capacity of $480mAh\;g^{-1}$, 33% higher than that of graphite. However, the capacity deteriorates continuously upon cycling due to the volume change of silicon monoxide. In this study, the factors that can improve the cycle performance have been discussed through the change in the configurations of the electrode and the electrolyte. The electrode using the carboxymethyl cellulose (CMC) binder shows the best cycle performance compared to the conventional binders. The electrode sing the CMC and styrene-butadiene rubber (SBR) binder not only has almost the similar cycle characteristics with the electrode using the CMC binder but also has the better rate capability. When the fluoroethylene carbonate (FEC) is used as an electrolyte additive, the cycle life is improved. However, the electrolyte with 5 wt% of FEC is appropriate because the rate capability decreases when the content of FEC is increased to 10 wt%. In addition, when the mass loading of the electrode is lowered, the cycle performance is greatly improved. Also, enhanced cycle performance is achieved using the roughened Cu current collector polished by abrasive paper.

키워드

참고문헌

  1. J.M. Tarason, M. Armand, 'Issues and challenges facing rechargeable lithium batteries' Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  2. S.R. Sivakkumar, J.Y. Nerkar, A. G. Pandolfo, 'Rate capability of graphite materials as negative electrodes in lithium-ion capacitors' Electrochem. Acta, 55, 3330 (2010). https://doi.org/10.1016/j.electacta.2010.01.059
  3. T.-H. Kim, J.-S. Park , S.K. Chang , S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase' Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  4. C.-M. Park, J.-H. Kim, H. Kim, and H.-J, Sohn, 'Li-alloy based anode materials for Li secondary batteries' Chem. Soc. Rev., 39, 3115 (2010). https://doi.org/10.1039/b919877f
  5. X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, 'Silicon based lithium-ion battery anodes: A chronicle perspective review', Nano Energy, 31, 113 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
  6. M.N. Obrovac, and V.L. Chevrier, 'Alloy Negative Electrodes for Li-Ion batteries' Chem. Rev., 114, 11444 (2014). https://doi.org/10.1021/cr500207g
  7. J.H. Ryu, J.W. Kim, Y.-E. Sung, and S.M. Oh, 'Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries' Electrochem. Solid-State Lett., 7, A306 (2004). https://doi.org/10.1149/1.1792242
  8. A. Casimir, H. Zhang, O. Ogoke, J.C. Amine, J. Lu, and G. Wu, 'Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation' Nano Energy, 27, 359 (2016). https://doi.org/10.1016/j.nanoen.2016.07.023
  9. J. Entwistle, A. Rennie, and S. Patwardhan, 'A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond' J. Mater. Chem. A, 6, 18329 (2018). https://doi.org/10.1039/C8TA90223B
  10. B.M. Bang, H. Kim, and S. Park, 'Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications' J. Electrochem. Sci. Tech., 2, 157 (2011). https://doi.org/10.33961/JECST.2011.2.3.157
  11. N. Umirov, D.-H. Seo, K.-N. Jung, H.-Y. Kim, and S.-S. Kim, 'Ni added Si-Al Alloys with Enhanced $Li^+$ Storage Performance for Lithium-Ion Batteries' J. Electrochem. Sci. Technol., 10, 82 (2019). https://doi.org/10.5229/JECST.2019.10.1.82
  12. J.-I. Lee, and S.Park, 'High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching' Nano Energy, 2, 146 (2013). https://doi.org/10.1016/j.nanoen.2012.08.009
  13. J. W. Kim, J. H. Ryu, K. T. Lee and S. M. Oh, 'Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries' J. Power Sources, 147, 227 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.041
  14. Y. S. Jung, K. T. Lee, J. H. Ryu, D. Im, and S. M. Oh, 'Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries' J. Electrochem. Soc., 152, A1452 (2005). https://doi.org/10.1149/1.1933616
  15. S.-M. Kim, B. Lee, J. G. Lee, J. B. Lee, J. H. Ryu, H.-T. Kim, Y. G. Kim, and S. M. Oh, 'Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes', J. Kor. Electrochem. Soc., 19, 87 (2016). https://doi.org/10.5229/JKES.2016.19.3.87
  16. J. Li, R. B. Lewis, and J. R. Dahn, 'Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries', Electrochem. Solid-State Lett., 10, A17 (2007). https://doi.org/10.1149/1.2398725
  17. N.-S. Choi, S.-Y. Ha, Y. Lee, J. Y. Jang, M.-H. Jeong, W. C. Shin, and M. Ue, 'Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries', J. Electrochem. Sci. Technol., 6, 35 (2015). https://doi.org/10.33961/JECST.2015.6.2.35
  18. Z. Karkar, D. Guyomard, L. Roue, and B. Lestriez, 'A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes', Electrochim. Acta, 258, 453 (2017). https://doi.org/10.1016/j.electacta.2017.11.082
  19. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid', ACS Appl. Mater. Interfaces, 2, 3004 (2010). https://doi.org/10.1021/am100871y
  20. P. Parikh, M. Sina, A. Banerjee, X. Wang, M. S. D'Souza, J.-M. Doux, E. A. Wu, O. Y. Trieu, Y. Gong, Q. Zhou, K. Snyder, and Y. S. Meng, 'Role of Polyacrylic Acid (PAA) Binder on the Solid Electrolyte Interphase in Silicon Anodes', Chem. Mater., 31, 2535 (2019). https://doi.org/10.1021/acs.chemmater.8b05020
  21. J.-S. Bridel, T. Azais, M. Morcrette, J.-M. Tarascon, and D. Larcher, 'Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries', Chem. Mater., 22, 1229 (2010). https://doi.org/10.1021/cm902688w
  22. T. Jaumann, J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, J. Eckert, and L. Giebeler, 'SEIcomponent formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders', Phys. Chem. Chem. Phys., 17, 24956 (2015). https://doi.org/10.1039/C5CP03672K
  23. H. Zhao, X. Yu, J. Li, B. Li, H. Shao, L. Li, and Y. Deng, 'Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook', J. Mater. Chem. A, 7, 8700 (2019). https://doi.org/10.1039/C9TA00126C
  24. C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Bjorefors, K. Edstrom, and T. Gustafsson, 'Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive', Chem. Mater., 27, 2591 (2015). https://doi.org/10.1021/acs.chemmater.5b00339
  25. S.-H. Moon, S.-J. Kim, M.-C. Kim, J.-Y. So, J.-E. Lee, Y.-K. Shin, W.-G. Bae, and K.-W. Park, 'Stress-relieved Si anode on a porous Cu current collector for highperformance lithium-ion batteries' Mater. Chem. Phys., 223, 152 (2019). https://doi.org/10.1016/j.matchemphys.2018.10.042
  26. X. Ke, Y. Cheng, J. Liu, L. Liu, N. Wang, J. Liu, C. Zhi, Z. Shi, and Z. Guo, 'Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage' ACS Appl. Mater. Interfaces, 10, 13552 (2018). https://doi.org/10.1021/acsami.8b01978
  27. S. Choi, T.-H. Kim, J.-I. Lee, J. Kim, H.-K. Song, and S. Park, 'General Approach for High-Power Li-Ion Batteries: Multiscale Lithographic Patterning of Electrodes' ChemSusChem, 7, 3483, (2014).
  28. S. Lee, N. Go, J.H. Ryu, and J. Mun, 'Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries' J. Electrochem. Sci. Technol., 10, 244 (2019). https://doi.org/10.5229/jecst.2019.10.2.244
  29. Z. Liu, Q. Yu, Y. Zhao, R. He, M. Xu, S. Feng, S. Li, L. Zhou, and L. Mai, 'Silicon oxides: a promising family of anode materials for lithium-ion batteries' Chem. Soc. Rev., 48, 285 (2019). https://doi.org/10.1039/C8CS00441B
  30. T. Kim, S. Park, and S. M. Oh, 'Solid-State NMR and Electrochemical Dilatometry Study on $Li^+$ Uptake/Extraction Mechanism in SiO Electrode' J. Electrochem. Soc., 154, A1112 (2007). https://doi.org/10.1149/1.2790282
  31. K. W. Kim, H. Park, J. G. Lee, J. Kim, Y.-U. Kim, J. H. Ryu, J. J. Kim, and S. M. Oh, 'Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries' Electrochim. Acta, 103, 226 (2013). https://doi.org/10.1016/j.electacta.2013.04.040
  32. K. W. Kim, J. G. Lee, H. Park, J. Kim, J. H. Ryu, Y.-U. Kim, and S. M. Oh, 'Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carboncoated SiO Negative Electrode' J. Korean Electrochem. Soc., 17, 49-56, 2014. https://doi.org/10.5229/JKES.2013.17.1.49
  33. M.N. Obrovac and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction' Electrochem. Solid-State Lett., 7, A93 (2004). https://doi.org/10.1149/1.1652421
  34. A. Hohl, T. Wieder, P.A. van Aken, T.E.Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, H. Fuess, 'An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO)' J. Non-Cryst. Solids, 320, 255 (2003). https://doi.org/10.1016/S0022-3093(03)00031-0
  35. Y. Nagao, H. Sakaguchi, H. Honda, T. Fukunaga, T. Esaka, 'Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering' J. Electrochem. Soc., 151, A1572 (2004). https://doi.org/10.1149/1.1787173
  36. T. Izawa, A. F. Arif, S. Taniguchia, K. Kamikubo, H. Iwasaki, and T. Ogi, 'Improving the performance of Liion battery carbon anodes by in-situ immobilization of $SiO_x$ nanoparticles' Mater. Res. Bull., 112, 16 (2019). https://doi.org/10.1016/j.materresbull.2018.11.044
  37. T. Hirose, M. Morishita, H. Yoshitake, and T. Sakai, 'Investigation of carbon-coated SiO phase changes during charge/discharge by X-ray absorption fine structure' Solid State Ionics, 304, 1 (2017). https://doi.org/10.1016/j.ssi.2017.03.008
  38. H.-M. Shin, C.-H. Doh, D.-H. Kim, H.-S. Kim, K.-H. Ha, B.-S. Jin, H.-S. Kim, S.-I. Moon, K.-W. Kim, and D.-H. Oh, 'High Coulombic Efficiency Negative Electrode(SiO-Graphite) for Lithium Ion Secondary Battery' J. Kor. Electrochem. Soc., 11, 47 (2008). https://doi.org/10.5229/JKES.2008.11.1.047
  39. J. Jung, J. Jang, O. B. Chae, T. Yoon, J. H. Ryu, and S. M. Oh, 'Reinforcement of an electrically conductive network with ethanol as a dispersing agent in the slurry preparation step' J. Power Sources, 287, 359 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.006