DOI QR코드

DOI QR Code

An Observational Study on the Morphological Changes of the External Ear Canal by Converging DICOM Imaging and Design Modeling

DICOM 영상과 설계 모델링을 융합한 외이도의 형태적 변화 관찰 연구

  • 김형균 (극동대학교 방사선학과)
  • Received : 2019.08.21
  • Accepted : 2019.11.20
  • Published : 2019.11.28

Abstract

DICOM(Digital Imaging and Communications in Medicine) imaging plays a significant role in the diagnosis and treatment of the human body, and design modeling is a technology of planning shapes in three dimensions according to the purpose. In this study, we converge these two technologies to observe the relationships of the cross-section, volume, and surface area to the morphological changes of the external ear canal. The experiment applied medical imaging technologies to acquire sections of the human body to create and divide centerlines using 3D shapes extracted from 19 external ear canals by applying stereolithography and 3-matic program. The results showed that the cross-sectional structure of the external ear canal had various shapes, such as oval (38.5%), semicircular (28.2%), mixed (17.9%), square (10.2%), and wrinkled (5.1%). In addition, the cross-sectional area of each phase increased as the length of the external ear canal increased, and the volume and surface area decreased towards the direction of the eardrum. However, the surface area reduction rate was relatively low. This indicates that the structure becomes irregular towards the direction of the eardrum.

DICOM 영상은 인체의 진단과 치료에 중요한 역할을 하고 있으며 설계모델링은 목적에 따라 형상을 3차원으로 계획하는 기술이다. 본 연구는 이러한 두 가지 기술을 융합하여 외이도의 형태적 변화에 대한 횡단면, 부피, 표면적의 관계를 관찰하고자 하였다. 실험은 인체의 단면 획득 의료영상기술을 적용하여 19귀의 외이도를 추출한 3차원 형상을 스테레오리소그래피, 3-매틱(matic) 프로그램으로 센터라인 생성 및 분할 기술을 적용하였다. 그 결과 외이도의 횡단면 구조는 타원형(38.5%), 반원형(28.2%), 혼재형(17.9%), 네모형(10.2%), 주름형(5.1%)등 다양한 형태가 나타났다. 또한 외이도 길이가 길수록 위상별 횡단면 면적은 크게 나타났으며 부피와 표면적은 고막방향으로 갈수록 감소하였지만 그 감소율은 상대적으로 낮게 나타났다. 이는 외이도의 형태가 고막방향으로 갈수록 불규칙한 구조로 되어 있음을 나타냈다.

Keywords

References

  1. T. H. Kim et al. (2019). A Review of Three-Dimensional Printing Technology for Medical Applications. Journal of the Korean Society of Radiology, 80(2), 213-225. DOI : 10.3348/jksr.2019.80.2.213
  2. H. Dodziuk. (2016). Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol., 13(3), 283-293. DOI: 10.5114/kitp.2016.62625
  3. F. Rengier et al. (2010). 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg, 5, 335-341. DOI: 10.1007/s11548-010-0476-x
  4. G. B. Kim et al. (2016), Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology. Korean Journal of Radiology, 17(2), 182-197. KMID : 0880420160170020182 https://doi.org/10.3348/kjr.2016.17.2.182
  5. H. G. Kim. (2016). A Novel Modeling Method for Manufacturing Hearing Aid Using 3D Medical Images. Journal of radiological science and technology, 39(2), 257-262. DOI : 10.17946/JRST.2016.39.2.15
  6. T. Wright. (2005). Deafness & Tinnitus, Academia, 29-30.
  7. H. J. Kang et al. (2006). Physical Anthropologic Characteristics of the Auricle through the Metric and Non-metric Analysis in Korean Young Adults, The Korean Journal of Physical Anthropology, 19(4), 255-265. https://doi.org/10.11637/kjpa.2006.19.4.255
  8. S. O. Jang & B. Y. Choi. (2003). Surgery of ear deformity and auricle, Department of Otorhinolaryngology, Seoul National University College of Medicine, Otolaryngology Head and Neck Surgery Seoul Symposium, 8, 1-23. DOI : https://doi.org/10.1080/10255842.2012.723700
  9. H. G. Kim. (2017). A Study of the Characteristics of the Human External Auditory Canal Using 3-Dimensional Medical Imaging, Journal of the Korea Society of Radiology, 11(6), 467-473. DOI : http://www.riss.kr/link?id=A103842954 https://doi.org/10.7742/jksr.2017.11.6.467
  10. J. H. An et al. (2011). Omestic aids Use of hearing loss and failure analysis, State Institute of Health and Medical Research Report, 1-273.
  11. S. D. Heo, J. H. Lee, S. M. Jeon & I. H. Kim. (2010). Resonance in the Concha Cavity is Associated with the Size of the Pinna, Korean Journal of Communication Disorders, 15, 107-113.
  12. P. A. Johansen. (1975). Measurement of the human ear canal, Acoustica, 33, 349-351.
  13. D. P. Egolf, D. K. Nelson, H. C. Howell & V. D Larson. (1993). Quantifying earcanal geometry with multiple computer-assisted tomographic scans, J Acoust Soc Am, 93, 2809-2819. https://doi.org/10.1121/1.405802
  14. S. K. Choi & C. G. Kim. (2009). Surface Rendering in Abdominal Aortic Aneurysm by Deformable Model. Journal of the Korea Contents Association, 9(6), 266-274. DOI : 10.5392/JKCA.2009.9.6.266
  15. S. J. Oh. (2015). Introduction to Hearing Aids, Sigma Press, 358-362.
  16. J. H. Yoon, T. J. Ji, J. Yoon & H. G. Kim. (2017). A Convergence Study on the 5-axis Machining Technology using the DICOM Image of the Humerus Bone, Journal of the Korea Convergence Society, 8(11), 115-121. DOI : 10.15207/JKCS.2017.8.11.115
  17. K. B. Kim & E. H. Goo. (2016). Image Evaluation for A Kind of Patient Fixing Pad in 64 Multi-Channel Detector Computed Tomography, Journal of the Korea Convergence Society, 7(1), 89-95. DOI : 10.15207/jkcs.2016.7.1.089
  18. P. A. Johansen. (1975). Measurement of the Human Ear Canal, Acoustic, 33, 349-351.
  19. R. Oliveira, M. Babcock, M. Venem, G. Hoeker, B. Parish & V. Kolpe. (2005). The Dynamic Ear Canal and Its Implications, Hear Reviews, 2(2), 18-19.