References
- B. Sarwar, G. Karypis, J. Konstan & J. Riedl. (2000). Analysis of Recommendation Algorithms for ECommerce. Proc. of ACM EC '00 conference, 158-167.
- G. Adomavicius & A. Tuzhilin. (2005). Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. on Knowledge and Data Engineering, 17(6), 734-749. https://doi.org/10.1109/TKDE.2005.99
- J. S. Kim. (2016). Subway Congestion Prediction and Recommendation System using Big Data Analysis. Journal of digital Convergence, 14(11), 289-295. DOI : 10.14400/JDC.2016.14.11.289
- Dae-Sung Seo. (2019). A Study on the Autonomous Decision Right of Emotional AI based on Analysis of 4th Wave Technology Availability in the Hyper-Linkage, Journal of Convergence for Information Technology, 9(8), 9-19. DOI : 10.22156/CS4SMB.2019.9.8.009
- J. Horey, E. Begoli, R. Gunasekaran, S. Lim & J. Nutaro. (2012). Big Data Platforms as a Service: Challenges and Approach, USENIX Workshop on Hot Topics in Cloud Computing (HotCloud).
- B. Cabral, R. D. Beltro & M. G. Manzato. (2014). Combining Multiple Metadata Types in Movies Recommendation Using Ensemble Algorithms, In Proceedings of the 20th Brazilian Symposium on Multimedia and the Web (pp. 231-238).
- E. W. T. Ngai, Y. Hu, Y. H. Wong, Y. Chen & X. Sun. (2010). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems 50, 559-569. https://doi.org/10.1016/j.dss.2010.08.006
- The R. C. Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. The R Foundation [Online]. https://www.R-project.org/
- J. T. Oh & S. Y. Lee. (2019). A Music Recommendation System based on Context-awareness using Association Rules. Journal of digital Convergence, 17(9), 375-381. DOI : 10.14400/JDC.2019.17.9.375
- J. L. Herlocker, J. A. Konstan, L. G. Terveen & J. Riedl. (2004). Evaluating Collaborative Filtering Recommender Systems, ACM Transactions on Information Systems, 22(1), 5-53. https://doi.org/10.1145/963770.963772
- I. H. Witten, E. Frank & M. A. Hall. (2011). Data Mining: Practical Machine Learning Tools and Techniques, Amsterdam : Elsevier.
- M. P. Callao & I. Ruisanchez. (2018) An overview of multivariate qualitative methods for food fraud detection. Food Control, 86, 83-293. https://doi.org/10.1016/j.foodcont.2017.11.014
- S. H. Namn & K. S. Noh. (2015). A Study on the Effective Approaches to Big Data Planning, Journal of digital Convergence, 13(1), 227-235, https://doi.org/10.14400/JDC.2015.13.1.227
- K. S. Noh. (2015). Convergence Analysis of Recognition and Influence on Bigdata in the e-Learning Field, Journal of digital Convergence, 13(10), 51-58. DOI : 10.14400/JDC.2015.13.10.51
- H. J. Jung. (2015). The Analysis of Data on the basis of Software Test Data. Journal of digital Convergence, 13(10), 1-7. https://doi.org/10.14400/JDC.2015.13.10.1