DOI QR코드

DOI QR Code

A Study of Similarity Measure Algorithms for Recomendation System about the PET Food

반려동물 사료 추천시스템을 위한 유사성 측정 알고리즘에 대한 연구

  • Kim, Sam-Taek (School of Information Technology Convergence, Woosong University)
  • Received : 2019.10.16
  • Accepted : 2019.11.20
  • Published : 2019.11.28

Abstract

Recent developments in ICT technology have increased interest in the care and health of pets such as dogs and cats. In this paper, cluster analysis was performed based on the component data of pet food to be used in various fields of the pet industry. For cluster analysis, the similarity was analyzed by analyzing the correlation between components of 300 dogs and cats in the market. In this paper, clustering techniques such as Hierarchical, K-Means, Partitioning around medoids (PAM), Density-based, Mean-Shift are clustered and analyzed. We also propose a personalized recommendation system for pets. The results of this paper can be used for personalized services such as feed recommendation system for pets.

ICT 기술 발전으로 강아지와 고양이등 반려동물 돌보기와 건강에 대한 관심도가 높아지고 있다. 본 논문에서는 반려동물 산업의 다양한 분야에 활용될 수 있도록 반려동물 사료의 성분 데이터를 기반으로 군집분석을 수행하고 적합한 서비스에 대해 고찰한다. 군집분석을 위해 시중에서 유통되고 있는 300여 개의 강아지 및 고양이 펫푸드를 대상으로 성분별 상관관계를 분석하여 유사성을 측정하며, Hierarchical, K-Means, Partitioning around medoids(PAM), Density-based, Mean-Shift 등의 다양한 클러스터링 기법을 활용하여 군집화 하여 분석한다. 또한 반려동물의 개인화 추천시스템도 제안한다. 본 논문의 연구 결과는 반려동물을 대상으로 한 사료 추천시스템 등의 맞춤형 개인화 서비스에 활용할 수 있다.

Keywords

References

  1. B. Sarwar, G. Karypis, J. Konstan & J. Riedl. (2000). Analysis of Recommendation Algorithms for ECommerce. Proc. of ACM EC '00 conference, 158-167.
  2. G. Adomavicius & A. Tuzhilin. (2005). Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. on Knowledge and Data Engineering, 17(6), 734-749. https://doi.org/10.1109/TKDE.2005.99
  3. J. S. Kim. (2016). Subway Congestion Prediction and Recommendation System using Big Data Analysis. Journal of digital Convergence, 14(11), 289-295. DOI : 10.14400/JDC.2016.14.11.289
  4. Dae-Sung Seo. (2019). A Study on the Autonomous Decision Right of Emotional AI based on Analysis of 4th Wave Technology Availability in the Hyper-Linkage, Journal of Convergence for Information Technology, 9(8), 9-19. DOI : 10.22156/CS4SMB.2019.9.8.009
  5. J. Horey, E. Begoli, R. Gunasekaran, S. Lim & J. Nutaro. (2012). Big Data Platforms as a Service: Challenges and Approach, USENIX Workshop on Hot Topics in Cloud Computing (HotCloud).
  6. B. Cabral, R. D. Beltro & M. G. Manzato. (2014). Combining Multiple Metadata Types in Movies Recommendation Using Ensemble Algorithms, In Proceedings of the 20th Brazilian Symposium on Multimedia and the Web (pp. 231-238).
  7. E. W. T. Ngai, Y. Hu, Y. H. Wong, Y. Chen & X. Sun. (2010). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems 50, 559-569. https://doi.org/10.1016/j.dss.2010.08.006
  8. The R. C. Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. The R Foundation [Online]. https://www.R-project.org/
  9. J. T. Oh & S. Y. Lee. (2019). A Music Recommendation System based on Context-awareness using Association Rules. Journal of digital Convergence, 17(9), 375-381. DOI : 10.14400/JDC.2019.17.9.375
  10. J. L. Herlocker, J. A. Konstan, L. G. Terveen & J. Riedl. (2004). Evaluating Collaborative Filtering Recommender Systems, ACM Transactions on Information Systems, 22(1), 5-53. https://doi.org/10.1145/963770.963772
  11. I. H. Witten, E. Frank & M. A. Hall. (2011). Data Mining: Practical Machine Learning Tools and Techniques, Amsterdam : Elsevier.
  12. M. P. Callao & I. Ruisanchez. (2018) An overview of multivariate qualitative methods for food fraud detection. Food Control, 86, 83-293. https://doi.org/10.1016/j.foodcont.2017.11.014
  13. S. H. Namn & K. S. Noh. (2015). A Study on the Effective Approaches to Big Data Planning, Journal of digital Convergence, 13(1), 227-235, https://doi.org/10.14400/JDC.2015.13.1.227
  14. K. S. Noh. (2015). Convergence Analysis of Recognition and Influence on Bigdata in the e-Learning Field, Journal of digital Convergence, 13(10), 51-58. DOI : 10.14400/JDC.2015.13.10.51
  15. H. J. Jung. (2015). The Analysis of Data on the basis of Software Test Data. Journal of digital Convergence, 13(10), 1-7. https://doi.org/10.14400/JDC.2015.13.10.1