DOI QR코드

DOI QR Code

기계학습 기법을 이용한 CNC 공구 마모도 예측에 관한 연구

A Study on the Prediction of CNC Tool Wear Using Machine Learning Technique

  • 투고 : 2019.10.01
  • 심사 : 2019.11.20
  • 발행 : 2019.11.28

초록

4차 산업혁명이 주목받고 있다. 특히 스마트 팩토리는 제조 분야에서 그 필요성이 강조되고 있다. 현재 제조 분야에서 CNC(Computerized Numeric Controller: 컴퓨터 수치 제어)에 관한 연구가 활발히 진행 중이다. 국내에서는 CNC 설비에 음향 센서, 진동 센서 등 여러 가지 센서를 부착하여 소음, 진동 등 설비 관련 데이터를 수집하는 방안에 관한 연구가 존재한다. 본 연구는 CNC 머신에서 발생하는 데이터를 중심으로 머신러닝 기법을 활용하여 설비 가동 조건이 공구 마모도에 미치는 영향을 분석한다. CNC 설비에서 발생하는 X축, Y축, Z축의 힘, 이동 속도 등 다양한 데이터를 수집한다. 데이터 탐색 기법을 통해 데이터의 특성 및 분포를 분석하였다. 데이터를 RF(Random Forest), XGB(Extreme Gradient Boost), SVM(Support Vector Machine)을 이용하여 CNC 설비 가동 조건이 공구 마모도에 미치는 영향을 분석하였다. 본 연구의 결과는 CNC 설비 가동에서 최적의 조건을 찾고, 이를 바탕으로 품질 향상 및 기계 손상을 예방하는데 활용될 수 있을 것으로 기대된다.

The fourth industrial revolution is noted. It is a smarter factory. At present, research on CNC (Computerized Numeric Controller) is actively underway in the manufacturing field. Domestic CNC equipment, acoustic sensors, vibration sensors, etc. This study can improve efficiency through CNC. Collect various data such as X-axis, Y-axis, Z-axis force, moving speed. Data exploration of the characteristics of the collected data. You can use your data as Random Forest (RF), Extreme Gradient Boost (XGB), and Support Vector Machine (SVM). The result of this study is CNC equipment.

키워드

참고문헌

  1. J. H. Ryu. (2019). Monitoring of Milling Processes through Measurement of Power Consumption. Master dissertation, Seoul University, Seoul.
  2. J. J. Kim. (2019). A Detection and Stabilization Method for CNC Tool Vibration using Acoustic Sensor. Journal of Korea Institute of Information, Electronics, and Communication Technology, 12(2), 120-146. DOI : 10.17661/jkiiect.2019.12.2.120
  3. Y C Liu, X F Hu & S. X. Sun. (2019, July). Remaining Useful Life Prediction of Cutting Tools Based on Support Vector Regression. IOP Conference Series: Materials Science and Engineering (pp. 1-8). China : IOP Publishing.
  4. J. H. Oh & J. S. Kim. (2017. June). Prediction of Housing Price using Machine Learning: Focusing on MARS, Korea Housing Association 2017 Spring Conference (pp. 153-17)1, Korea : the Korean Association for Housing Policy Studies
  5. A. Kumar et al. (2019). An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools, Computers & Industrial Engineering, 128, 1008-1014. DOI : 10.1016/j.cie.2018.05.017
  6. S. T. Jung. (2018). Prediction and Experiments of Cutting Forces in Down Milling of Hardened Mold Steel, Journal of the Korean Society of Manufacturing Technology Engineers, 27(4), 346-350. DOI : 10.7735/ksmte.2018.27.4.346
  7. D. Wu et al. (2017). A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests, Journal of Manufacturing Science and Engineering, 139(7), 1-19. DOI : 10.1115/1.4036350
  8. J. Wang & R. Zhao. (2017). Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks, Sensors 2017, 17(2), 2-18 DOI : 10.3390/s17020273
  9. S. H. Kang. (2016). Multivariate Monitoring of the Metal Frame Process in Mobile Device Manufacturing, Journal of the Korean Institute of Industrial Engineers, 42(6), 1-9 DOI : 10.7232/JKIIE.2016.42.6.395
  10. AMIT JAIN & BHUPESH KUMARLAD. (2016). Data Driven Models for Prognostics of High Speed Milling Cutters, International Journal of Performability Engineering, 12(1), 3-12 DOI : 10.23940/ijpe.16.1.p3.mag
  11. T. Benkedjouh (2015). Health assessment and life prediction of cutting tools based on support vector regression, Journal of Intelligent Manufacturing 2015, 26(2), 213-223 DOI : 10.1007/s10845-013-0774-6
  12. A. Gouarir & G. Martinez-Arellano. (2018. June). In-process Tool Wear Prediction System Based on Machine, 8th CIRP Conference on High Performance Cutting, (pp. 501-504), Hungary : Procedia CIRP DOI : 10.1016/j.procir.2018.08.253
  13. H. J. Kim. (2019). Machine Learning-based Quality Control and Error Correction Using Homogeneous Temporal Data Collected by IoT Sensors, Journal of the Korea Convergence Society, 10(4), 17-23 DOI : 10.15207/JKCS.2019.10.4.017
  14. S. W. Bae. (2018). Estimation of the Apartment Housing Price Using the Machine Learning Methods: The Case of Gangnam-gu, Journal of the Korea Real Estate Analysts Association, 24(1), 69-85 DOI : 10.19172/KREAA.24.1.5
  15. H. J. KIM. (2019). Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments, International Journal of Geo-Information, 7(5), 1-16 DOI : 10.3390/ijgi7050168