참고문헌
- J. H. Ryu. (2019). Monitoring of Milling Processes through Measurement of Power Consumption. Master dissertation, Seoul University, Seoul.
- J. J. Kim. (2019). A Detection and Stabilization Method for CNC Tool Vibration using Acoustic Sensor. Journal of Korea Institute of Information, Electronics, and Communication Technology, 12(2), 120-146. DOI : 10.17661/jkiiect.2019.12.2.120
- Y C Liu, X F Hu & S. X. Sun. (2019, July). Remaining Useful Life Prediction of Cutting Tools Based on Support Vector Regression. IOP Conference Series: Materials Science and Engineering (pp. 1-8). China : IOP Publishing.
- J. H. Oh & J. S. Kim. (2017. June). Prediction of Housing Price using Machine Learning: Focusing on MARS, Korea Housing Association 2017 Spring Conference (pp. 153-17)1, Korea : the Korean Association for Housing Policy Studies
- A. Kumar et al. (2019). An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools, Computers & Industrial Engineering, 128, 1008-1014. DOI : 10.1016/j.cie.2018.05.017
- S. T. Jung. (2018). Prediction and Experiments of Cutting Forces in Down Milling of Hardened Mold Steel, Journal of the Korean Society of Manufacturing Technology Engineers, 27(4), 346-350. DOI : 10.7735/ksmte.2018.27.4.346
- D. Wu et al. (2017). A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests, Journal of Manufacturing Science and Engineering, 139(7), 1-19. DOI : 10.1115/1.4036350
- J. Wang & R. Zhao. (2017). Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks, Sensors 2017, 17(2), 2-18 DOI : 10.3390/s17020273
- S. H. Kang. (2016). Multivariate Monitoring of the Metal Frame Process in Mobile Device Manufacturing, Journal of the Korean Institute of Industrial Engineers, 42(6), 1-9 DOI : 10.7232/JKIIE.2016.42.6.395
- AMIT JAIN & BHUPESH KUMARLAD. (2016). Data Driven Models for Prognostics of High Speed Milling Cutters, International Journal of Performability Engineering, 12(1), 3-12 DOI : 10.23940/ijpe.16.1.p3.mag
- T. Benkedjouh (2015). Health assessment and life prediction of cutting tools based on support vector regression, Journal of Intelligent Manufacturing 2015, 26(2), 213-223 DOI : 10.1007/s10845-013-0774-6
- A. Gouarir & G. Martinez-Arellano. (2018. June). In-process Tool Wear Prediction System Based on Machine, 8th CIRP Conference on High Performance Cutting, (pp. 501-504), Hungary : Procedia CIRP DOI : 10.1016/j.procir.2018.08.253
- H. J. Kim. (2019). Machine Learning-based Quality Control and Error Correction Using Homogeneous Temporal Data Collected by IoT Sensors, Journal of the Korea Convergence Society, 10(4), 17-23 DOI : 10.15207/JKCS.2019.10.4.017
- S. W. Bae. (2018). Estimation of the Apartment Housing Price Using the Machine Learning Methods: The Case of Gangnam-gu, Journal of the Korea Real Estate Analysts Association, 24(1), 69-85 DOI : 10.19172/KREAA.24.1.5
- H. J. KIM. (2019). Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments, International Journal of Geo-Information, 7(5), 1-16 DOI : 10.3390/ijgi7050168