DOI QR코드

DOI QR Code

Photovoltaic Performance of Crystalline Silicon Recovered from Solar Cell Using Various Chemical Concentrations in a Multi-Stage Process

습식 화학 공정에 의한 태양전지로부터 고순도 실리콘 회수 및 이를 이용한 태양전지 재제조

  • Noh, Min-Ho (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Lee, Jun-Kyu (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Ahn, Young-Soo (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Yeo, Jeong-Gu (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Lee, Jin-Seok (Separation and Conversion Materials Laboratory, Korea Institute of Energy Research) ;
  • Kang, Gi-Hwan (Photovoltaic Laboratory, Korea Institute of Energy Research) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 노민호 (한국에너지기술연구원 분리변환소재연구실) ;
  • 이준규 (한국에너지기술연구원 분리변환소재연구실) ;
  • 안영수 (한국에너지기술연구원 분리변환소재연구실) ;
  • 여정구 (한국에너지기술연구원 분리변환소재연구실) ;
  • 이진석 (한국에너지기술연구원 분리변환소재연구실) ;
  • 강기환 (한국에너지기술연구원 태양광연구실) ;
  • 조철희 (충남대학교 에너지과학기술대학원)
  • Received : 2019.09.17
  • Accepted : 2019.10.15
  • Published : 2019.11.27

Abstract

In this study, using a wet chemical process, we evaluate the effectiveness of different solution concentrations in removing layers from a solar cell, which is necessary for recovery of high-purity silicon. A 4-step wet etching process is applied to a 6-inch back surface field(BSF) solar cell. The metal electrode is removed in the first and second steps of the process, and the anti-reflection coating(ARC) is removed in the third step. In the fourth step, high purity silicon is recovered by simultaneously removing the emitter and the BSF layer from the solar cell. It is confirmed by inductively coupled plasma mass spectroscopy(ICP-MS) and secondary ion mass spectroscopy(SIMS) analyses that the effectiveness of layer removal increases with increasing chemical concentrations. The purity of silicon recovered through the process, using the optimal concentration for each process, is analyzed using inductively coupled plasma atomic emission spectroscopy(ICP-AES). In addition, the silicon wafer is recovered through optimum etching conditions for silicon recovery, and the solar cell is remanufactured using this recovered silicon wafer. The efficiency of the remanufactured solar cell is very similar to that of a commercial wafer-based solar cell, and sufficient for use in the PV industry.

Keywords

References

  1. Solar Power Europe. Global Market Outlook For Solar Power 2019 - 2023, Brussels, May (2019).
  2. J. Tao and S. Yu, Sol. Energy Mater. Sol. Cells., 141, 108 (2015). https://doi.org/10.1016/j.solmat.2015.05.005
  3. European parliament, Council of the European Union, WEEE. Off. J. Eur. Union, L. 197, p. 38-71 (2012).
  4. T. Doi, I. Tsuda, H. Unagida, A. Murata, K. Sakuta and K. Korokawa, Sol. Energy Mater. Sol. Cells., 67, 397 (2001). https://doi.org/10.1016/S0927-0248(00)00308-1
  5. E. Klugmann-Radziemska, P. Ostrowski, K. Drabczyk, P. Panek and M. Szkodo, Sol. Energy Mater. Sol. Cells., 94, 2275 (2010). https://doi.org/10.1016/j.solmat.2010.07.025
  6. E. Radziemska, T. Seramak and P. Ostrowski, Adv. Mater. Sci., 8, 18 (2008).
  7. G. Granata, F. Pagnanelli, E. Moscardini, T. havlik and L. Toro, Sol. Energy Mater. So. Cells., 123, 239 (2014). https://doi.org/10.1016/j.solmat.2014.01.012
  8. J. Shin, J. Park and N. Park, Sol. Energy Mater. So. Cells., 162, 1 (2017). https://doi.org/10.1016/j.solmat.2016.12.038
  9. M. Tammaro, J. Rimauro, V. Fiandra and A. Salluzzo, Renew Energy, 81, 103 (2015). https://doi.org/10.1016/j.renene.2015.03.014
  10. Y. Kim and J. Lee, Sol. Energy Mater. Sol. Cells., 87, 317 (2012).
  11. E. C. Cho, J. C. Song, Y. H. Cho and J. Yi, J. Korea Photovoltaic Soc., 6, 124 (2018). (in Korea)
  12. J. Tao and S. Yu, Sol. Energy Mater. Sol. Cells., 141, 108 (2015). https://doi.org/10.1016/j.solmat.2015.05.005
  13. J. S. Park and N. C. Park, Trans. Royal Soc. Chem., 4, 34823 (2014).
  14. J. K. Lee, J. S. Lee, Y. S. Ahn, G. H. Kang, H. E. Song, J. I. Lee, M. G Kang and C. H. Cho, Sol. Energy Mater. Sol. Cells., 160, 301 (2017). https://doi.org/10.1016/j.solmat.2016.10.034
  15. K. Takami, M. Kobashi, Y. Shiraga, M. Uddinn, Y. Kato and S. Wu, Mater. Trans., 56, 2047 (2015). https://doi.org/10.2320/matertrans.M2015293
  16. J. K. Lee, J. S. Lee, Y. S. Ahn and G. H. Kang, Sustainability, 11, 3659 (2019). https://doi.org/10.3390/su11133659
  17. J. Park, W. Kim, N. Cho, H. Lee and N. Park, Green Chem., 18, 1706 (2016). https://doi.org/10.1039/C5GC01819F
  18. S. K. Sadrnezhaad, E. Ahmadi and M. Mozammel, J. Mater. Sci. Technol., 22 (2006).
  19. E.E. Abd El Aal, S. Abd El Wanees, A. farouk and S. M. Abd El Haleem, Corros. Sci., 68, 14 (2014). https://doi.org/10.1016/j.corsci.2012.09.038
  20. T. A. Tahir and O. F. Bahjet, Diyala J. Pure Sci., 13, 3 (2017).
  21. H. Ritala, J. Kiihamaki and M. Heikkila, Microelectron. Eng., 87, 501 (2010). https://doi.org/10.1016/j.mee.2009.07.005
  22. H. Camon and Z. Moktadir, Microelectronics J, 28, 509 (1997). https://doi.org/10.1016/S0026-2692(96)00067-5
  23. H. Kim, S. Kim, S. Park, J. Song, Y. D. Kim, S. J. Tark, S. Kwon, S. Yoon, C. Son and D. Kim, Korean J. Mater. Res., 21, 5 (2011).
  24. Tatsuo Saga, NPG Asia Mater., 2, 96 (2010). https://doi.org/10.1038/asiamat.2010.82
  25. S. W. Glunz, R. Preu and D. Biro, Comprehen Renewable Energy, 1, 9 (2012).
  26. M. S. Lee and D. H. Kim, J. Korean Inst. of Resour. Recycling, 20, 61 (2011) (in Korea). https://doi.org/10.7844/kirr.2011.20.1.061
  27. T. Tiedje, E. Yablonovitch, G. D. Cody and B. G. Brooks, IEEE Trans Electron DEV, 31, 711 (1984). https://doi.org/10.1109/T-ED.1984.21594