DOI QR코드

DOI QR Code

펩티도글리칸에 의한 단핵세포의 Tumor necrosis factor-α 발현 기전 연구

Molecular Mechanisms Involved in Peptidoglycan-induced Expression of Tumor Necrosis Factor-α in Monocytic Cells

  • 정지영 (부산대학교 의과대학 약리학교실) ;
  • 손용해 (부산대학교 의과대학 약리학교실) ;
  • 김보영 (부산대학교 의과대학 약리학교실) ;
  • 김관회 (부산대학교 의과대학 약리학교실)
  • Jeong, Ji-Young (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Son, Yonghae (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Kim, Bo-Young (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Kim, Koanhoi (Department of Pharmacology, School of Medicine, Pusan National University)
  • 투고 : 2019.09.03
  • 심사 : 2019.11.08
  • 발행 : 2019.11.30

초록

본 연구에서는 펩티도글리칸이 단핵세포의 $TNF-{\alpha}$ 발현에 미치는 영향을 조사하였고, 또한 펩티도글리칸에 의한 $TNF-{\alpha}$ 발현에 관련된 세포의 요소들을 연구하였다. 사람의 단핵세포주인 THP-1 세포를 펩티도글리칸에 노출시키는 경우 $TNF-{\alpha}$ 분비 증가뿐만 아니라 $TNF-{\alpha}$ 유전자 전사를 유도하는 결과를 가져왔다. TLR-2/4의 억제제인 OxPAPC은 펩티도글리칸에 의한 $TNF-{\alpha}$의 발현을 저해하였다. 그리고 U0126, SB202190, SP6001250, LY294002, Akti IV, rapamycin, NAC, DPI 같은 약리학적 저해제 또한 $TNF-{\alpha}$ 발현을 유전자/단백질 수준에서 상당히 약화시켰다. 그러나 polymyxin B는 $TNF-{\alpha}$ 발현에 영향을 주지않았다. 따라서 펩티도글리칸이 TLR-2, PI3K, Akt, mTOR, MAPKs, ROS 등을 통하여 단핵세포의 $TNF-{\alpha}$ 발현을 증가시킴을 확인하였다.

Peptidoglycan (PG) is found in atheromatous lesions of arteries, where monocytes/macrophages express inflammatory cytokines, including tumor necrosis factor-alpha ($TNF-{\alpha}$). This study investigated the effects of PG on $TNF-{\alpha}$ expression and examined possible cellular factors involved in $TNF-{\alpha}$ upregulation. The overall aim was to identify the molecular mechanisms underlying inflammatory responses to bacterial pathogen-associated molecular patterns in the artery. Exposure of human THP-1 monocytic cells to PG enhanced the secretion of $TNF-{\alpha}$ and induced its gene transcription. Inhibition of TLR-2/4 with OxPAPC significantly inhibited $TNF-{\alpha}$ gene expression, whereas inhibition of LPS by polymyxin B did not. The PG-induced expression of $TNF-{\alpha}$ was also significantly suppressed by pharmacological inhibitors that modulate activities of cellular signaling molecules; for example, U0126 (an ERK inhibitor), SB202190 (a p38 MAPK inhibitor), and SP6001250 (a JNK inhibitor) significantly attenuated PG-induced transcription of $TNF-{\alpha}$ and secretion of its gene product. $TNF-{\alpha}$ expression was also inhibited by rapamycin (an mTOR inhibitor), LY294002 (a PI3K inhibitor), and Akt inhibitor IV (an Akt inhibitor). ROS-regulating compounds, like NAC and DPI, also significantly attenuated $TNF{\alpha}$ expression induced by PG. These results suggest that PG induces $TNF-{\alpha}$ expression in monocytes/macrophages by multiple molecules, including TLR-2, PI3K, Akt, mTOR, MAPKs, and ROS.

키워드

참고문헌

  1. Akira, S., Uematsu, S. and Takeuchi, O. 2006. Pathogen recognition and innate immunity. Cell 124, 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  2. Barath, P., Fishbein, M. C., Cao, J., Berenson, J., Helfant, R. and Forrester, J. S. 1990. Detection and localization of tumor necrosis factor in human atheroma. Am. J. Cardiol. 65, 297-302. https://doi.org/10.1016/0002-9149(90)90291-8
  3. Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L. and Wolfson, M. F. 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-33. https://doi.org/10.1038/385729a0
  4. Branen, L., Hovgaard, L., Nitulescu, M., Bengtsson, E., Nilsson, J. and Jovinge, S. 2004. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 24, 2137-2142. https://doi.org/10.1161/01.ATV.0000143933.20616.1b
  5. Cardoso, L. S., Araujo, M. I., Goes, A. M., Pacifico, L. G., Oliveira, R. R. and Oliveira, S. C. 2007. Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis. Microb. Cell Fact. 6, 1. https://doi.org/10.1186/1475-2859-6-1
  6. Dobrina, A., Nardon, E., Vecile, E., Cinco, M. and Patriarca, P. 1995. Leptospira icterohemorrhagiae and leptospire peptidolgycans induce endothelial cell adhesiveness for polymorphonuclear leukocytes. Infect Immu. 63, 2995-2999. https://doi.org/10.1128/IAI.63.8.2995-2999.1995
  7. Getz, G. S. 2005. Thematic review series: the immune system and atherogenesis. Immune function in atherogenesis. J. Lipid Res. 46, 1-10. https://doi.org/10.1194/jlr.R400013-JLR200
  8. Hahn-Windgassen, A., Nogueira, V., Chen, C. C., Skeen, J. E., Sonenberg, N. and Hay, N. 2005. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081-32089. https://doi.org/10.1074/jbc.M502876200
  9. Kavoosi, G., Ardestani, S. K. and Kariminia, A. 2009. The involvement of TLR2 in cytokine and reactive oxygen species (ROS) production by PBMCs in response to Leishmania major phosphoglycans (PGs). Parasitology 136, 1193-1199. https://doi.org/10.1017/S0031182009990473
  10. Kawai, T. and Akira, S. 2006. TLR signaling. Cell Death Differ. 13, 816-825. https://doi.org/10.1038/sj.cdd.4401850
  11. Laman, J. D., Schoneveld, A. H., Moll, F. L., van Meurs, M. and Pasterkamp, G. 2002. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am. J. Cardiol. 90, 119-123. https://doi.org/10.1016/S0002-9149(02)02432-3
  12. Langer, M., Malykhin, A., Maeda, K., Chakrabarty, K., Williamson, K. S. and Feasley, C. L. 2008. Bacillus anthracis peptidoglycan stimulates an inflammatory response in monocytes through the p38 mitogen-activated protein kinase pathway. PloS One 3, e3706. https://doi.org/10.1371/journal.pone.0003706
  13. Lee, S. A., Kim, S. M., Son, Y. H., Lee, C. W., Chung, S. W., Eo, S. K. and Kim, K. 2011. Peptidoglycan enhances secretion of monocyte chemoattractants via multiple signaling pathways. Biochem. Biophys. Res. Commun. 408, 132-138. https://doi.org/10.1016/j.bbrc.2011.03.136
  14. Manning, B. D. and Cantley, L. C. 2007. AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
  15. Miesel, R., Sanocka, D., Kurpisz, M. and Kroger, H. 1995. Anti-inflammatory effects of NADPH oxidase inhibitors. Inflammation 19, 347-362. https://doi.org/10.1007/BF01534392
  16. Nijhuis, M. M., Pasterkamp, G., Sluis, N. I., de Kleijn, D. P., Laman, J. D. and Ulfman, L. H. 2007. Peptidoglycan increases firm adhesion of monocytes under flow conditions and primes monocyte chemotaxis. J. Vasc. Res. 44, 214-222. https://doi.org/10.1159/000100420
  17. Ohta, H., Wada, H., Niwa, T., Kirii, H., Iwamoto, N. and Fujii, H. 2005. Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180, 11-17. https://doi.org/10.1016/j.atherosclerosis.2004.11.016
  18. Rus, H. G., Niculescu, F. and Vlaicu, R. 1991. Tumor necrosis factor-alpha in human arterial wall with atherosclerosis. Atherosclerosis 89, 247-254. https://doi.org/10.1016/0021-9150(91)90066-C
  19. Shaw, R. J. and Cantley, L. C. 2006. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424-430. https://doi.org/10.1038/nature04869
  20. Spagnuolo, G., D'Anto, V., Cosentino, C., Schmalz, G., Schweikl, H. and Rengo, S. 2006. Effect of N-acetyl-L-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 27, 1803-1809. https://doi.org/10.1016/j.biomaterials.2005.10.022
  21. Tedgui, A. and Mallat, Z. 2006. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol. Rev. 86, 515-81. https://doi.org/10.1152/physrev.00024.2005
  22. Thobe, B. M., Frink, M., Hildebrand, F., Schwacha, M. G., Hubbard, W. J. and Choudhry, M. A. 2007. The role of MAPK in Kupffer cell toll-like receptor (TLR) 2-, TLR4-, and TLR9-mediated signaling following trauma-hemorrhage. J. Cell. Physiol. 210, 667-675. https://doi.org/10.1002/jcp.20860
  23. Wajant, H., Pfizenmaier, K. and Scheurich, P. Tumor necrosis factor signaling. 2003. Cell Death Differ. 10, 45-65. https://doi.org/10.1038/sj.cdd.4401189
  24. Wang, Q., Dziarski, R., Kirschning, C. J., Muzio, M. and Gupta, D. 2001. Micrococci and peptidoglycan activate TLR2-->MyD88-->IRAK-->TRAF-->NIK-->IKK-->NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infect. Immu. 69, 2270-2276. https://doi.org/10.1128/IAI.69.4.2270-2276.2001
  25. Wang, Z. M., Liu, C. and Dziarski, R. 2000. Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin. J. Biol. Chem. 275, 20260-20267. https://doi.org/10.1074/jbc.M909168199
  26. Yoshimura, A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R. and Golenbock, D. 1999. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1-5.