DOI QR코드

DOI QR Code

페이스북 그룹 게시물 분석을 통한 우울증 관련 주제에 대한 고찰

Investigating Major Topics Through the Analysis of Depression-related Facebook Group Posts

  • 주영준 (성균관대학교 문헌정보학과) ;
  • 김동훈 (성균관대학교 문헌정보학과) ;
  • 이창호 (성균관대학교 문헌정보학과) ;
  • 이용정 (성균관대학교 문헌정보학과)
  • 투고 : 2019.10.09
  • 심사 : 2019.11.19
  • 발행 : 2019.11.30

초록

본 연구는 소셜 네트워크 서비스인 페이스북에서 우울증 관련 게시물을 분석하여 그 안에서 주로 논의되는 주제를 파악하고자 한다. 구체적으로, 접근 용이성, 개방성 및 익명성 등의 특징을 지니는 페이스북이라는 온라인 커뮤니티에서 사용자들이 다소 민감한 정신적 질환인 우울증에 관하여 어떤 내용을 논의하는지 살펴보고자 한다. 본 연구를 위해 페이스북 데이터 수집에서부터 주제어 추출에 이르기까지의 전반적인 과정을 포함하는 자연어 처리 기반의 데이터 분석 프레임워크를 구현하였다. 구현한 프레임워크를 이용하여, 본 연구는 우울증을 논의하는 페이스북 최대 사용자 그룹에서 최근 1년간 작성한 885개의 게시물을 수집하여 분석하였다. 주제어 추출의 완성도와 정확도를 위해 자동화된 기법과 수동적인 접근법(불용어 제거, 주제어 개수 지정)을 결합하였으며, 이를 통해 주제를 다각도에서 분석하였다. 분석 결과, 사용자들은 우울증 일반, 인간관계, 기분 및 느낌, 우울증 증상, 자살, 의료 참고, 그리고 가족 등에 대한 논의를 주로 하는 것으로 파악되었다.

The study aims to analyze the posts of depression-related Facebook groups to understand major topics discussed by group users. Specifically, the purpose of the study is to identify the topics and keywords of the posts to understand what users discuss about depression. Depression is a mental disorder that is somewhat sensitive in the online community, which is characterized by accessibility, openness and anonymity. The researchers have implemented a natural language-based data analysis framework that includes components ranging from Facebook data collection to the automated extraction of topics. Using the framework, we collected and analyzed 885 posts created in the past one year from the largest Facebook depression group. To derive more complete and accurate topics, we combined both automated and manual (e.g., stop words removal, topic size determination) methods. Results indicate that users discuss a variety of topics including depression in general, human relations, mood and feeling, depression symptoms, suicide, medical references, family and etc.

키워드

참고문헌

  1. Go, Gwangwoon et al. 2016. "Mood State Prediction of Twitter Users from Social Attributes." Extended Abstracts of HCI Korea 2016, January 27, 2016, Jeongseon: High 1 Resort: 639-641.
  2. Kim, Soojung. 2012. "An Exploratory Study of Undergraduate Students' Health Information Needs and Seeking Behaviors in Social Media." Journal of the Korean Biblia Society for Library and Information Science, 23(4): 239-260. https://doi.org/10.14699/kbiblia.2012.23.4.239
  3. Maeil Business News Korea. 2019. 'Depression' in his 60's, brutally murdered with his wife and daughter in hallucinations. [online] [cited 2019. 7. 23.]
  4. Mock, Yang Suk. 2015. "A Study on the Effect of Facebook Contents Emotion on Users' Emotional Change Reaction." Journal of Korean Society of Communication Design, 24: 91-99.
  5. Park, Eunjeong L. and Cho, Sungzoon. 2014. "KoNLPy: Korean Natural Language Processing in Python." In Proceedings of the 26th Annual Conference on Human and Cognitive Language Technology, October 10, 2014, Chuncheon: Kangwon National University Chuncheon Campus: 133-136.
  6. Lee, Jae-Beom et al. 2012. "A Comparative Study on Different Characteristics of Social Media and Product Information Processing and Evaluation." Journal of Information System, 21(1): 69-91. https://doi.org/10.5859/KAIS.2012.21.1.69
  7. Cha, Chiyoung and Cha, Meeyoung. 2012. "Discourse of Depression on Twitter." In Proceedings of 2012 Korean Society of Nursing Science, October 26, 2012, Seoul: Korean Science and Technology Hall: 276-276.
  8. Hwang, Yoosun. 2016. "Exploration of the Emotion for Daily Conversation on Facebook." Journal of the Korean Contents Association, 16(1): 1-13. https://doi.org/10.5392/JKCA.2016.16.02.001
  9. Aldarwish, M. M. and Ahmad, H. F. 2017. "Predicting Depression Levels Using Social Media Posts." In 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS), 22-24 March, 2017: Bangkok: 277-280.
  10. Bae, B. J. and Yi, Y. Y. 2017. "What Answers Do Questioners Want on Social Q&A? User Preferences of Answers about STDs." Internet Research, 27(5): 1104-1121. https://doi.org/10.1108/IntR-08-2016-0245
  11. Bae, B. J. and Yi, Y. Y. 2019. "Identification and Comparison of the Persuasive Elements Present in "Best Answers" to STD-Related Questions on Social Q&A Sites: Yahoo! Answers (United States) Versus Knowledge-iN (South Korea)." International Journal of Communication, 13: 2516-2534.
  12. Baker, D. A. and Algorta, G. P. 2016. "The Relationship Between Online Social Networking and Depression: A Systematic Review of Quantitative Studies." CyberPsychology, Behavior & Social Networking, 19(11): 638-648. https://doi.org/10.1089/cyber.2016.0206
  13. Bar, K. J. et al. 2004. "The Influence of Major Depression and Its Treatment on Heart Rate Variability and Pupillary Light Reflex Parameters." Journal of Affective Disorders, 82(2): 245-252. https://doi.org/10.1016/j.jad.2003.12.016
  14. Bazarova, N. N. et al. 2017. "Psychological Distress and Emotional Expression on Facebook." CyberPsychology, Behavior & Social Networking, 20(3): 157-163. https://doi.org/10.1089/cyber.2016.0335
  15. Boden, J. M. and Fergusson, D. M. "Alcohol and Depression." Addiction, 106(5): 906-914. https://doi.org/10.1111/j.1360-0443.2010.03351.x
  16. Blei, D. M., Ng, A. Y. and Jordan, M. 2003. "Latent Dirichlet Allocation." Journal of Machine Learning Research, 3(4/5): 993-1022.
  17. Cavazos-Rehg, P. A. et al. 2016. "A Content Analysis of Depression-related Tweets." Computers in human behavior, 54, 351-357. https://doi.org/10.1016/j.chb.2015.08.023
  18. Choudhury, M., Counts, S. and Horvitz, E. 2013. "Social Media as a Measurement Tool of Depression in Populations." In Proceedings of the 5th Annual ACM Web Science Conference, 2-4 May, 2013, Paris: 47-56.
  19. Chow, T. S. and Wan, H. Y. 2017. "Is there any 'Facebook Depression'? Exploring the moderating roles of neuroticism, Facebook social comparison and envy." Personality and Individual Differences, 119: 277-282. https://doi.org/10.1016/j.paid.2017.07.032
  20. Chua, A. Y. and Banerjee, S. 2015. "Measuring the Effectiveness of Answers in Yahoo! Answers." Online Information Review, 39(1): 104-118. https://doi.org/10.1108/OIR-10-2014-0232
  21. Fong, P. et al. 2014. "Quality of Online Information About Sexually Transmitted Diseases: Which Websites Should Patients Read?" Online Information Review, 38(5): 650-660. https://doi.org/10.1108/OIR-03-2014-0054
  22. Guntuku, S. C. et al. 2017. "Detecting Depression and Mental Illness on Social Media: An Integrative Review." Current Opinion in Behavioral Sciences, 18, 43-49. https://doi.org/10.1016/j.cobeha.2017.07.005
  23. Ha, J. H., Aikat, D. D. and Jung, E. H. 2015. "Theories and Messages in South Korean Antismoking Advertising." Health Communication, 30(10): 1022-1031. https://doi.org/10.1080/10410236.2014.915075
  24. Irwin, M. et al. 2003. "Nocturnal Catecholamines and Immune Function in Insomniacs, Depressed Patients, and Control Subjects." Brain Behavior and Immunity, 17(5): 365-372. https://doi.org/10.1016/S0889-1591(03)00031-X
  25. Jin, J. et al. 2016. "How Users Adopt Healthcare Information: An Empirical Study of an Online Q&A Community." International Journal of Medical Informatics, 86: 91-103. https://doi.org/10.1016/j.ijmedinf.2015.11.002
  26. Katchapakirin K. et al. 2018. "Facebook Social Media for Depression Detection in the Thai community." In Proceedings of 15th International Joint Conference on Computer Science and Software Engineering (JCSSE), 11-13 July, 2018, Nakhonpathom.
  27. Katon, W. J. et al. 2005. "The Association of Comorbid Depression with Mortality in Patients with Type 2 Diabetes." Diabetes Care, 28(11): 2668-2672. https://doi.org/10.2337/diacare.28.11.2668
  28. Kneidinger, B. 2010. Facebook und Co. Eine soziologische Analyse von Interaktionsformen in Online Social Networks. Wiesbaden, Germany: Springer. Quoted in Scherr, S. and Brunet, A. 2017. "Differential Influences of Depression and Personality Traits on the Use of Facebook." Social Media and Society, 3(1): 1-14.
  29. Knol, M. J. et al. 2006. "Depression as a Risk Factor for the Onset of Type 2 Diabetes Mellitus. A Meta-analysis." Diabetologia, 49(5): 837-845. https://doi.org/10.1007/s00125-006-0159-x
  30. Lachmar, E. M. et al. 2017. "# MyDepressionLooksLike: Examining Public Discourse About Depression on Twitter." JMIR Mental Health, 4(4): 1-11. https://doi.org/10.2196/mental.5946
  31. Lichtman, J. H. et al. 2008. "Depression and Coronary Heart Disease: Recommendations for Screening, Referral, and Treatment." Circulation, 118(17): 1768-1775. https://doi.org/10.1161/CIRCULATIONAHA.108.190769
  32. Meng, L. et al. 2012. "Depression Increases the Risk of Hypertension Incidence: A Metaanalysis of Prospective Cohort Studies." Journal of Hypertension, 30(5): 842-851. https://doi.org/10.1097/HJH.0b013e32835080b7
  33. Moreno, M. et al. 2011. "Feeling Bad on Facebook: Depression Disclosures by College Students on a Social Networking Site." Depression & Anxiety, 28(6): 447-455. https://doi.org/10.1002/da.20805
  34. Nadeem, M. 2016. Identifying Depression on Twitter. [online] [cited 2019. 7. 7.]
  35. Reavley, N. J. and Pilkington, P. D. 2014. "Use of Twitter to Monitor Attitudes Toward Depression and Schizophrenia: An Exploratory Study." PeerJ, 2: 1-15.
  36. Rehurek, R. and Sojka, P. 2010. "Software Framework for Topic Modelling with Large Corpora." In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, May 22, 2010. Valletta: Mediterranean Conference Centre: 46-50.
  37. Resnik, P. et al. 2015. "Beyond LDA: Exploring Supervised Topic Modeling for Depressionrelated Language in Twitter." In Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology, June 5, 2015, Denver: 99-107.
  38. Scherr, S. and Brunet, A. 2017. "Differential Influences of Depression and Personality Traits on the Use of Facebook." Social Media and Society, 3(1): 1-14.
  39. Scherr, S., Toma, C. L. and Schuster, B. 2018. "Depression as a Predictor of Facebook Surveillance and Envy: Longitudinal Evidence from a Cross-lagged Panel Study in Germany." Journal of Media Psychology: Theories, Methods, and Applications, [online] [cited 2019. 7. 5.]
  40. Shar, C., Kitzie, V. and Choi, E. 2014. "Modalities, Motivations, and Materials - Investigating Traditional and Social Online Q&A Services." Journal of Information Science, 40(5): 669-687. https://doi.org/10.1177/0165551514534140
  41. Song, H. et al. 2016. "Trusting Social Media as a Source of Health Information: Online Surveys Comparing the United States, Korea, and Hong Kong." Journal of Medical Internet Research, 18(3): e25. https://doi.org/10.2196/jmir.4193
  42. Yi, Y. Y. 2018. "Sexual Health Information-seeking Behavior on a Social Media Site: Predictors of Best Answer Selection." Online Information Review, 42(6): 880-897. https://doi.org/10.1108/OIR-06-2017-0204
  43. Yoon, S. et al. 2019. "Is Social Network Site Usage Related to Depression? A Meta-analysis of Facebook-depression Relations." Journal of Affective Disorders, 248(1): 65-72. https://doi.org/10.1016/j.jad.2019.01.026
  44. Zhang, Y. 2013. "Toward a Layered Model of Context for Health Information Searching: An Analysis of Consumer-generated Questions." Journal of the American Society for Information Science and Technology, 64(6): 1158-1172. https://doi.org/10.1002/asi.22821
  45. Zhao, Y. and Zhang, J. 2017. "Consumer Health Information Seeking in Social Media: A Literature Review." Health Information & Libraries Journal, 34(4): 268-283. https://doi.org/10.1111/hir.12192
  46. Zhu, Y. et al. 2018. "Understanding the Research Landscape of Major Depressive Disorder via Literature Mining: An Entity-level Analysis of PubMed Data from 1948-2017." JAMIA Open, 1(1), 115-121. https://doi.org/10.1093/jamiaopen/ooy001