References
- Alexandropoulos, K. and Baltimore, D. (1996). Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 10, 1341-1355. https://doi.org/10.1101/gad.10.11.1341
-
Arias-Salgado, E.G., Lizano, S., Sarkar, S., Brugge, J.S., Ginsberg, M.H., and Shattil, S.J. (2003). Src kinase activation by direct interaction with the integrin
${\beta}$ cytoplasmic domain. Proc. Natl. Acad. Sci. U. S. A. 100, 13298-13302. https://doi.org/10.1073/pnas.2336149100 - Asagiri, M., Sato, K., Usami, T., Ochi, S., Nishina, H., Yoshida, H., Morita, I., Wagner, E.F., Mak, T.W., Serfling, E., et al. (2005). Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261-1269. https://doi.org/10.1084/jem.20051150
- Barrow, A.D., Raynal, N., Andersen, T.L., Slatter, D.A., Bihan, D., Pugh, N., Cella, M., Kim, T., Rho, J., Negishi-Koga, T., et al. (2011). OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J. Clin. Invest. 121, 3505-3516. https://doi.org/10.1172/JCI45913
- Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
- Darnay, B.G., Ni, J., Moore, P.A., and Aggarwal, B.B. (1999). Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J. Biol. Chem. 274, 7724-7731. https://doi.org/10.1074/jbc.274.12.7724
- Destaing, O., Sanjay, A., Itzstein, C., Horne, W.C., Toomre, D., De Camilli, P., and Baron, R. (2008). The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol. Biol. Cell 19, 394-404. https://doi.org/10.1091/mbc.e07-03-0227
- Evans, K.E. and Fox, S.W. (2007). Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Cell Biol. 8, 4. https://doi.org/10.1186/1471-2121-8-4
- Hayman, A.R. (2008). Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41, 218-223. https://doi.org/10.1080/08916930701694667
- Ioannou, M.S., Bell, E.S., Girard, M., Chaineau, M., Hamlin, J.N.R., Daubaras, M., Monast, A., Park, M., Hodgson, L., and McPherson, P.S. (2015). DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior. J. Cell Biol. 208, 629-648. https://doi.org/10.1083/jcb.201407068
- Kim, J.H. and Kim, N. (2014). Regulation of NFATc1 in Osteoclast Differentiation. J. Bone Metab. 21, 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
- Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., and Kim, N. (2007). MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253-3259. https://doi.org/10.1182/blood-2006-09-048249
- Kim, K., Kim, J.H., Moon, J.B., Lee, J., Kwak, H.B., Park, Y.W., and Kim, N. (2012). The transmembrane adaptor protein, linker for activation of T cells (LAT), regulates RANKL-induced osteoclast differentiation. Mol. Cells 33, 401-406. https://doi.org/10.1007/s10059-012-0009-2
- Kim, N., Takami, M., Rho, J., Josien, R., and Choi, Y. (2002). A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 195, 201-209. https://doi.org/10.1084/jem.20011681
- Koga, T., Inui, M., Inoue, K., Kim, S., Suematsu, A., Kobayashi, E., Iwata, T., Ohnishi, H., Matozaki, T., Kodama, T., et al. (2004). Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758-763. https://doi.org/10.1038/nature02444
- Kurochkina, N. and Guha, U. (2013). SH3 domains: modules of proteinprotein interactions. Biophys. Rev. 5, 29-39. https://doi.org/10.1007/s12551-012-0081-z
- Lee, Y.D., Yoon, S.H., Ji, E., and Kim, H.H. (2015a). Caveolin-1 regulates osteoclast differentiation by suppressing cFms degradation. Exp. Mol. Med. 47, e192. https://doi.org/10.1038/emm.2015.77
- Lee, Y.D., Yoon, S.H., Park, C.K., Lee, J., Lee, Z.H., and Kim, H.H. (2015b). Caveolin-1 regulates osteoclastogenesis and bone metabolism in a sexdependent manner. J. Biol. Chem. 290, 6522-6530. https://doi.org/10.1074/jbc.M114.598581
- Levy-Apter, E., Finkelshtein, E., Vemulapalli, V., Li, S.S., Bedford, M.T., and Elson, A. (2014). Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase in osteoclasts. J. Biol. Chem. 289, 36048-36058. https://doi.org/10.1074/jbc.M114.603548
- Li, B., Boast, S., de los Santos, K., Schieren, I., Quiroz, M., Teitelbaum, S.L., Tondravi, M.M., and Goff, S.P. (2000). Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat. Genet. 24, 304-308. https://doi.org/10.1038/73542
- Lichy, J.H., Modi, W.S., Seuanez, H.N., and Howley, P.M. (1992). Identification of a human chromosome 11 gene which is differentially regulated in tumorigenic and nontumorigenic somatic cell hybrids of HeLa cells. Cell Growth Differ. 3, 541-548.
- Majidi, M., Gutkind, J.S., and Lichy, J.H. (2000). Deletion of the COOH terminus converts the ST5 p70 protein from an inhibitor of RAS signaling to an activator with transforming activity in NIH-3T3 cells. J. Biol. Chem. 275, 6560-6565. https://doi.org/10.1074/jbc.275.9.6560
- Majidi, M., Hubbs, A.E., and Lichy, J.H. (1998). Activation of extracellular signal-regulated kinase 2 by a novel Abl-binding protein, ST5. J. Biol. Chem. 273, 16608-16614. https://doi.org/10.1074/jbc.273.26.16608
- Miyamoto, H., Katsuyama, E., Miyauchi, Y., Hoshi, H., Miyamoto, K., Sato, Y., Kobayashi, T., Iwasaki, R., Yoshida, S., Mori, T., et al. (2012). An essential role for STAT6-STAT1 protein signaling in promoting macrophage cell-cell fusion. J. Biol. Chem. 287, 32479-32484. https://doi.org/10.1074/jbc.M112.358226
- Oh, H., Ozkirimli, E., Shah, K., Harrison, M.L., and Geahlen, R.L. (2007). Generation of an analog-sensitive Syk tyrosine kinase for the study of signaling dynamics from the B cell antigen receptor. J. Biol. Chem. 282, 33760-33768. https://doi.org/10.1074/jbc.M704846200
- Ou, K., Zhang, J., Jiao, Y., Wang, Z.V., Scherer, P., and Kaestner, K.H. (2018). Overexpression of ST5, an activator of Ras, has no effect on beta-cell proliferation in adult mice. Mol. Metab. 11, 212-217. https://doi.org/10.1016/j.molmet.2018.03.009
- Park, J.H., Lee, N.K., and Lee, S.Y. (2017). Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol. Cells 40, 706-713. https://doi.org/10.14348/molcells.2017.0225
- Ren, R., Mayer, B.J., Cicchetti, P., and Baltimore, D. (1993). Identification of a ten-amino acid proline-rich SH3 binding site. Science 259, 1157-1161. https://doi.org/10.1126/science.8438166
- Rho, J., Takami, M., and Choi, Y. (2004). Osteoimmunology: interactions of the immune and skeletal systems. Mol. Cells 17, 1-9.
- Ryu, J., Kim, H.J., Chang, E.J., Huang, H., Banno, Y., and Kim, H.H. (2006). Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 25, 5840-5851. https://doi.org/10.1038/sj.emboj.7601430
- Schwartzberg, P.L., Xing, L., Hoffmann, O., Lowell, C.A., Garrett, L., Boyce, B.F., and Varmus, H.E. (1997). Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/- mutant mice. Genes Dev. 11, 2835-2844. https://doi.org/10.1101/gad.11.21.2835
- Takayanagi, H. (2005). Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83, 170-179. https://doi.org/10.1007/s00109-004-0612-6
- Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
-
Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A., Yokochi, T., Oda, H., Tanaka, K., et al. (2000). T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-
${\gamma}$ . Nature 408, 600-605. https://doi.org/10.1038/35046102 -
Tomomura, M., Hasegawa, H., Suda, N., Sakagami, H., and Tomomura, A. (2012). Serum calcium-decreasing factor, caldecrin, inhibits receptor activator of NF-
${\kappa}B$ ligand (RANKL)-mediated Ca2+ signaling and actin ring formation in mature osteoclasts via suppression of Src signaling pathway. J. Biol. Chem. 287, 17963-17974. https://doi.org/10.1074/jbc.M112.358796 - Varin, A., Pontikoglou, C., Labat, E., Deschaseaux, F., and Sensebe, L. (2013). CD200R/CD200 inhibits osteoclastogenesis: new mechanism of osteoclast control by mesenchymal stem cells in human. PLoS One 8, e72831. https://doi.org/10.1371/journal.pone.0072831
- Wintges, K., Beil, F.T., Albers, J., Jeschke, A., Schweizer, M., Claass, B., Tiegs, G., Amling, M., and Schinke, T. (2013). Impaired bone formation and increased osteoclastogenesis in mice lacking chemokine (C-C motif) ligand 5 (Ccl5). J. Bone Miner. Res. 28, 2070-2080. https://doi.org/10.1002/jbmr.1937
- Yadav, S.S. and Miller, W.T. (2007). Cooperative activation of Src family kinases by SH3 and SH2 ligands. Cancer Lett. 257, 116-123. https://doi.org/10.1016/j.canlet.2007.07.012
- Yamasaki, T., Ariyoshi, W., Okinaga, T., Adachi, Y., Hosokawa, R., Mochizuki, S., Sakurai, K., and Nishihara, T. (2014). The dectin 1 agonist curdlan regulates osteoclastogenesis by inhibiting nuclear factor of activated T cells cytoplasmic 1 (NFATc1) through Syk kinase. J. Biol. Chem. 289, 19191-19203. https://doi.org/10.1074/jbc.M114.551416
- Yoon, S.H., Lee, Y., Kim, H.J., Lee, Z.H., Hyung, S.W., Lee, S.W., and Kim, H.H. (2009). Lyn inhibits osteoclast differentiation by interfering with PLCgamma1-mediated Ca2+ signaling. FEBS Lett. 583, 1164-1170. https://doi.org/10.1016/j.febslet.2009.03.005
- Zaidi, M. (2007). Skeletal remodeling in health and disease. Nat. Med. 13, 791. https://doi.org/10.1038/nm1593
Cited by
- Oleoylethanolamide Exhibits GPR119-Dependent Inhibition of Osteoclast Function and GPR119-Independent Promotion of Osteoclast Apoptosis vol.43, pp.4, 2019, https://doi.org/10.14348/molcells.2020.2260