References
- Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37, 1141-1149 https://doi.org/10.1016/S0161-5890(01)00025-6
- Casali P and Schettino EW (1996) Structure and function of natural antibodies. Curr Top Microbiol Immunol 210, 167-179
- Hjelm F, Carlsson F, Getahun A and Heyman B (2006) Antibody-mediated regulation of the immune response. Scand J Immunol 64, 177-184 https://doi.org/10.1111/j.1365-3083.2006.01818.x
- Ehrenstein MR and Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10, 778-786 https://doi.org/10.1038/nri2849
- Ricci ML, von Hunolstein C, Gomez MJ, Parisi L, Tissi L and Orefici G (1996) Protective activity of a murine monoclonal antibody against acute and chronic experimental infection with type IV group B streptococcus. J Med Microbiol 44, 475-481 https://doi.org/10.1099/00222615-44-6-475
- Hustinx W, Benaissa-Trouw B, Van Kessel K et al (1997) Granulocyte colony-stimulating factor enhances protection by anti-K1 capsular IgM antibody in murine Escherichia coli sepsis. Eur J Clin Invest 27, 1044-1048 https://doi.org/10.1046/j.1365-2362.1997.2290787.x
- Connolly SE, Thanassi DG and Benach JL (2004) Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia. J Immunol 172, 1191-1197 https://doi.org/10.4049/jimmunol.172.2.1191
- Kinoshita M, Shinomiya N, Ono S et al (2006) Restoration of natural IgM production from liver B cells by exogenous IL-18 improves the survival of burn-injured mice infected with Pseudomonas aeruginosa. J Immunol 177, 4627-4635 https://doi.org/10.4049/jimmunol.177.7.4627
- Schwartz JT, Barker JH, Long ME, Kaufman J, McCracken J and Allen LA (2012) Natural IgM mediates complementdependent uptake of Francisella tularensis by human neutrophils via complement receptors 1 and 3 in nonimmune serum. J Immunol 189, 3064-3077 https://doi.org/10.4049/jimmunol.1200816
- Brown JS, Hussell T, Gilliland SM et al (2002) The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci U S A 99, 16969-16974 https://doi.org/10.1073/pnas.012669199
- Alugupalli KR, Gerstein RM, Chen J, Szomolanyi-Tsuda E, Woodland RT and Leong JM (2003) The resolution of relapsing fever borreliosis requires IgM and is concurrent with expansion of B1b lymphocytes. J Immunol 170, 3819-3827 https://doi.org/10.4049/jimmunol.170.7.3819
- Klinman DM, Yi AK, Beaucage SL, Conover J and Krieg AM (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A 93, 2879-2883 https://doi.org/10.1073/pnas.93.7.2879
- Krieg AM, Yi AK, Matson S et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546-549 https://doi.org/10.1038/374546a0
- Deng JC, Moore TA, Newstead MW, Zeng X, Krieg AM and Standiford TJ (2004) CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection. J Immunol 173, 5148-5155 https://doi.org/10.4049/jimmunol.173.8.5148
- Ishii KJ, Ito S, Tamura T et al (2005) CpG-activated Thy1.2+ dendritic cells protect against lethal Listeria monocytogenes infection. Eur J Immunol 35, 2397-2405 https://doi.org/10.1002/eji.200425795
- Mohamed W, Domann E, Chakraborty T et al (2016) TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress. BMC Microbiol 16, 230 https://doi.org/10.1186/s12866-016-0855-8
- Wu HM, Wang J, Zhang B, Fang L, Xu K and Liu RY (2016) CpG-ODN promotes phagocytosis and autophagy through JNK/P38 signal pathway in Staphylococcus aureus-stimulated macrophage. Life Sci 161, 51-59 https://doi.org/10.1016/j.lfs.2016.07.016
- Kim TH, Kim D, Gautam A et al (2018) CpG-DNA exerts antibacterial effects by protecting immune cells and producing bacteria-reactive antibodies. Sci Rep 8, 16236 https://doi.org/10.1038/s41598-018-34722-y
- Adem PV, Montgomery CP, Husain AN et al (2005) Staphylococcus aureus sepsis and the Waterhouse-Friderichsen syndrome in children. N Engl J Med 353, 1245-1251 https://doi.org/10.1056/NEJMoa044194
- Neu HC (1992) The crisis in antibiotic resistance. Science 257, 1064-1073 https://doi.org/10.1126/science.257.5073.1064
- Schaffer AC and Lee JC (2008) Vaccination and passive immunisation against Staphylococcus aureus. Int J Antimicrob Agents 32 Suppl 1, S71-78 https://doi.org/10.1016/j.ijantimicag.2008.06.009
- Fattom AI, Horwith G, Fuller S, Propst M and Naso R (2004) Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. Vaccine 22, 880-887 https://doi.org/10.1016/j.vaccine.2003.11.034
- Vernachio J, Bayer AS, Le T et al (2003) Anti-clumping factor A immunoglobulin reduces the duration of methicillin-resistant Staphylococcus aureus bacteremia in an experimental model of infective endocarditis. Antimicrob Agents Chemother 47, 3400-3406 https://doi.org/10.1128/AAC.47.11.3400-3406.2003
- Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO and Notkins AL (2007) The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1, 51-61 https://doi.org/10.1016/j.chom.2007.01.002
- Hoffman W, Lakkis FG and Chalasani G (2016) B Cells, Antibodies, and More. Clin J Am Soc Nephrol 11, 137-154 https://doi.org/10.2215/CJN.09430915
- Cole LE, Yang Y, Elkins KL et al (2009) Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc Natl Acad Sci U S A 106, 4343-4348 https://doi.org/10.1073/pnas.0813411106
- Panda S, Zhang J, Tan NS, Ho B and Ding JL (2013) Natural IgG antibodies provide innate protection against ficolin-opsonized bacteria. EMBO J 32, 2905-2919 https://doi.org/10.1038/emboj.2013.199
- Park BK, Maharjan S, Lee SI et al (2018) Generation and characterization of a monoclonal antibody against MERSVoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep 52, 397-402 https://doi.org/10.5483/bmbrep.2019.52.6.185
- Kim DW, Shin MJ, Choi YJ et al (2018) Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-kB pathways. BMB Rep 51, 654-659 https://doi.org/10.5483/BMBRep.2018.51.12.248